Page 242 - 49A Field Guide to Genetic Programming
P. 242

228                                                        INDEX


            evolutionary quantum computing, 120  FPGA, 92
            evolutionary search, mathematical models,  GP implementation, 93
                    98                        fractal compression, 129
            evolving agents, 122              freeware, 148
            evolving designs, 23                  ECJ, 148
            example                               GPC++, 148
                crossover, 34                     Lil-GP, 148
                ephemeral random constant, 29     Open Beagle, 148
                fitness, 30                        TinyGP, 151–162
                function set, 30              frequency of primitives, 136
                mutation, 33                  full random trees, 12–13
                parameter, 30                 function arity, 11
                terminal set, 29              function set, 19–23
                termination, 31                   evolving non-programs, 23
            exceptions                            example, 30
                integer overflow, 22               modelling, 115
                problems caused by trapping, 22   side effects, 24
            exchange rate, 123                    sufficiency, 22–23
            executable model, bloat, 102      function-defining branch, 48
            expression simplification, 135
            extended  compact  genetic  algorithm  gambling, 123
                    (eCGA), 70                game theory, 123
            extended compact GP (eCGP), 72    games, 127
                                              generalisation-accuracy tradeoff, 107
            farming in parallel GP, 89        generalised ant programming (GAP), 74
            feature selection, 115            genetic operator, 2
            field programmable gate array (FPGA), 92  rates, 26, 116
            films, feature, 128                genetic program representation, 9
            films, GP, 146                     GENR8, 76
            financial time series prediction, 123–124  geographically distributed GP, 93–95
            fine-grained distributed GP, 94    GP implementations, 147–148
            finite state automata, 66              TinyGP, 151–162
            fitness, 2, 24–26                  GP problem solver (GPPS), 51
                anytime, 85                   GP-ZIP, 130
                case, 26                      GPC++, implmentation, 148
                  reduction, 83               GPU, 90
                combined objectives, 75–76        speedup factor, 92
                dynamic, 84                   grammar, 53
                dynamic, multi-objective, 80–81   based constraint, 53
                example, 30                       based GP, 53
                fast                                initialisation, 57
                  FPGA, 92                          operators, 57
                  GPU, 90–92                      context-sensitive, 55
                  sub-machine-code, 93            tree adjoining, 55
                hits, 76                      grammar model based program evolution
                incremental, 58                       (GMPE), 74
                multi-objective, 75–80        grammatical evolution
                  image processing, 122           troubleshooting, 134
                RMS, 115                      grammatical evolution, 55
                sharing, 77, 137              graph, directed acyclic (DAG), 87
                staged, 81, 85                graph-based GP, 65–68
                static, problems with, 84     graphics processing unit (GPU), 90
                symbolic regression, 115      grow random trees, 12–14
            for, syntax constraint, 52            tree size bias, 13
            Fourier transform, quantum evolution, 120  growth vs. bloat, 101
   237   238   239   240   241   242   243   244   245   246   247