Page 243 - 49A Field Guide to Genetic Programming
P. 243

INDEX                                                         229


            guidelines, applications, 111           Java, 64
                                                    T7, 64
            halting probability, 100              SIMD and GPU, 92
            halting program, Markov chain model, 100  introns
            Hamming distance, 71                  troubleshooting, 136
            hardware implementations of GP, 93    useful with mutation, 64
            headless chicken crossover, 16    invention, evolution of, 119
            heuristic, 126                    inverse kinematics, 115
            hierarchical structure, 47        inverse problem, 112
            higher-order type systems, 53     iterated functions system (IFS), 128
            hill climbing, 46
            hits, 76                          jet engine optimisation, 125
            hoist mutation, 43, 106           journals, 147
            homologous crossover, 44
                linear GP, 64                 kinematics, 120
                theory, 98
            Huffman encoding, 129              L-system, 74, 76
            human competitive                     tree adjoining grammar, 58
                artificial intelligence, 117–121, 141  Lagrange
                awards (Humies), 119              distribution of the second kind, 104
            human readable programs, 51           initialisation, 41
            hyper-heuristic, evolving, 126    large populations, 137
                                              learning, machine (ML), 1
            image                             lexicographic
                compression, 128                  parsimony bloat control, 77, 80
                processing, 121, 122              preference, 77, 80
                watermark, 122                libraries, dynamic, 47, 48
            implementations of GP, 147–148    Lil-GP, 148
                FPGA, 93                      limits, size and depth, 104
                GPU, 90–92                    Lindenmayer grammar, see L-system
                TinyGP, 151–162               linear GP, 61–64
            inactive code, 102                    Cartesian GP, 67
            incremental fitness, 58                crossover, 64
            indirect representation, 58             homologous, 64
            industrial modelling, multi-objective GP,  instruction format, 62, 63
                    79                            interpreted, 62, 64
            information content of population, 139  introns, 64
            information theory, 46                  removal, 64
            infrared images, 121                  Java, 64
            infrared spectra, 125                 mutation, 64
            initialisation                        speed, 62
                effects on bloat, 40               T7, 64
                full method, 12–13            linear representation, 61–64
                grammar-based GP, 57              Cartesian GP, 67
                grow method, 12–14            linearised tree-based GP
                  tree size bias, 13              prefix, 62
                Lagrange, 41                      reverse polish, 92
                ramped half-and-half, 13      logic network, evolution, 66
                ramped uniform, 40            lossless compression, 129
                type system, 56               lossy compression, 128
                uniform, 40
            integer overflow, 22               machine code GP, 62–64
            intelligence, artificial (AI), 1       Intel x86, 63
            interpreted GP, 24                    SPARC, 62, 63
                linear, 62, 64                    Z80, 62, 63
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=99)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 99  Average Size   50  Fitness     0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   238   239   240   241   242   243   244   245   246   247   248