Page 241 - 49A Field Guide to Genetic Programming
P. 241

INDEX                                                         227


            conference submission, 139            toroidal grid, 94
            conferences, 145, 147             density of solutions, 57
            constant, ephemeral random, 20    depth
            constraints                           node, 12
                bias, 55                          tree, 12
                enforced by crossover etc, 53  depth limits, 104
                grammar-based, 53             derivation tree, 54
                on tree size or depth, 104    developmental GP, 23, 57
                  dynamic, 105                direct problem, 112
                on tree structure, 52         directed acyclic graph (DAG), 87
                reduction of search space, 55  DirectX, 90
                semantic, 56                  disassortative mating, 82
                strong typing, 52             Discipulus, 63, 124
                syntactic, 56                 discussion group, 149
            context-preserving crossover, 45  distributed
                theory, 98                        evolutionary algorithm, 88–95
            context-sensitive grammar, 55         GP, 93–95
            control                               populations
                proportional integrative and deriva-  fine-grained, 94
                    tive (PID), 119                 geographically, 93–95
                robot, 119                          ring topology, 94
            Core War, 120                           toroidal grid, 94
            covariant parsimony pressure, 107  distribution
            crossover                             sampling, 69
                between ADFs, 49              diversity, 94
                bias theory, 104                  promotion, multi-objective GP, 78
                Cartesian GP, 68              Draughts, 127
                constrained, 52               dynamic fitness, 84
                context-preserving, 45, 98    dynamic size or depth limits, 105
                depth based, 45               dynamic subset selection (DSS), 85
                example, 34
                FPGA, 93                      EA, 1
                headless chicken, 16          EC, 1
                homologous, 44, 98            ECJ, Java implementation, 148
                linear GP, homologous, 64     economic modelling, 123–124
                one-point, 44                 editing operator, 46
                operator, 2                   efficient market hypothesis, 123
                PDGP, 66                      elitism, troubleshooting, 137
                point, 15                     Elvis robot, 115
                rate, 17                      embarrassingly parallel, 89
                size-fair, 45, 98, 105        engine monitoring and control, 121
                subtree, 15                   entropy, 129
                uniform, 44                   ephemeral random constant, 20
            curve fitting, 113–116                 example, 29
                                              estimation  of  distribution  algorithms
            data cache, 86                            (EDAs), 69
            data flow GP, 65                   estimation of distribution programming
            data mining, 85                           (EDP), 72
                many variables, 125           evaluation safety, 22
                medical, 125                  even parity, 78
            data modelling, 113–116           evolutionary algorithm (EA), 1
            data visualisation, 135               distributed, 88–95
                virtual reality, 80           evolutionary art, 128
            deme, 93                          evolutionary computation (EC), 1
                ring topology, 94             evolutionary music, 128
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=92)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 92  Average Size   50  Fitness     0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   236   237   238   239   240   241   242   243   244   245   246