Page 237 - 49A Field Guide to Genetic Programming
P. 237

BIBLIOGRAPHY                                                  223


            Y. Zhang and P. I. Rockett. Evolving optimal feature extraction using multi-objective
              genetic programming: a methodology and preliminary study on edge detection. In H.-
              G. Beyer, et al., editors, GECCO 2005: Proceedings of the 2005 conference on Genetic
              and evolutionary computation, volume 1, pages 795–802, Washington DC, USA, 25-29
              June 2005. ACM Press. ISBN 1-59593-010-8. URL http://www.cs.bham.ac.uk/~wbl/
              biblio/gecco2005/docs/p795.pdf.                            GPBiB
            Y. Zhang and P. I. Rockett. Feature extraction using multi-objective genetic program-
              ming. In Y. Jin, editor, Multi-Objective Machine Learning, volume 16 of Studies in
              Computational Intelligence, chapter 4, pages 79–106. Springer, 2006. ISBN 3-540-
              30676-5. Invited chapter.                                  GPBiB
            E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolu-
              tionary Algorithm. Technical Report 103, Gloriastrasse 35, CH-8092 Zurich, Switzer-
              land, 2001. URL http://citeseer.ist.psu.edu/article/zitzler01spea.html.
















































                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=85)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 85  Average Size   50  Fitness     0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   232   233   234   235   236   237   238   239   240   241   242