Page 233 - 49A Field Guide to Genetic Programming
P. 233

BIBLIOGRAPHY                                                  219


            I. G. Tsoulos and I. E. Lagaris. Genanneal: Genetically modified simulated annealing.
              Computer Physics Communications, 174(10):846–851, 15 May 2006.  GPBiB
            A. M. Turing. Intelligent machinery. Report for National Physical Laboratory. Reprinted
              in Ince, D. C. (editor). 1992. Mechanical Intelligence: Collected Works of A. M. Turing.
              Amsterdam: North Holland. Pages 107127. Also reprinted in Meltzer, B. and Michie,
              D. (editors). 1969. Machine Intelligence 5. Edinburgh: Edinburgh University Press,
              1948.
            A. M. Turing. Computing machinery and intelligence. Mind, 49:433–460, January 01
              1950. URL http://www.cs.umbc.edu/471/papers/turing.pdf.    GPBiB

            I. Usman, A. Khan, R. Chamlawi, and A. Majid. Image authenticity and perceptual
              optimization via genetic algorithm and a dependence neighborhood. International
              Journal of Applied Mathematics and Computer Sciences, 4(1):615–620, 2007. ISSN
              1305-5313. URL http://www.waset.org/ijamcs/v4/v4-1-7.pdf.  GPBiB
            S. Vaidyanathan, D. I. Broadhurst, D. B. Kell, and R. Goodacre. Explanatory optimiza-
              tion of protein mass spectrometry via genetic search. Analytical Chemistry, 75(23):
              6679–6686, 2003.  URL http://dbkgroup.org/Papers/AnalChem75(6679-6686).pdf.
              GPBiB
            J. J. Valdes and A. J. Barton. Virtual reality visual data mining via neural networks
              obtained from multi-objective evolutionary optimization: Application to geophysical
              prospecting. In International Joint Conference on Neural Networks, IJCNN’06, pages
              4862–4869, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, 16-21
              July 2006. IEEE.                                           GPBiB
            V. Venkatraman, A. R. Dalby, and Z. R. Yang. Evaluation of mutual information and
              genetic programming for feature selection in QSAR. Journal of Chemical Information
              and Modeling, 44(5):1686–1692, 2004.                       GPBiB
            B. Vowk, A. S. Wait, and C. Schmidt. An evolutionary approach generates human com-
              petitive coreware programs. In M. Bedau, et al., editors, Workshop and Tutorial Pro-
              ceedings Ninth International Conference on the Simulation and Synthesis of Living
              Systems(Alife XI), pages 33–36, Boston, Massachusetts, 12 September 2004. Artificial
              Chemistry and its applications workshop.                   GPBiB
            I. Vukusic, S. N. Grellscheid, and T. Wiehe. Applying genetic programming to the pre-
              diction of alternative mRNA splice variants. Genomics, 89(4):471–479, April 2007.
              GPBiB
            R.  L.  Walker.  Search  engine  case  study:  searching  the  web  using  ge-
              netic programming and MPI.  Parallel Computing,  27(1-2):71–89,  January
              2001.  URL http://www.sciencedirect.com/science/article/B6V12-42K5HNX-4/1/
              57eb870c72fb7768bb7d824557444b72.                          GPBiB

            P. Walsh and C. Ryan. Paragen: A novel technique for the autoparallelisation of se-
              quential programs using genetic programming. In J. R. Koza, et al., editors, Ge-
              netic Programming 1996: Proceedings of the First Annual Conference, pages 406–
              409, Stanford University, CA, USA, 28–31 July 1996. MIT Press.  URL http:
              //cognet.mit.edu/library/books/view?isbn=0262611279.       GPBiB
            D. C. Weaver.  Applying data mining techniques to library design, lead genera-
              tion and lead optimization.  Current Opinion in Chemical Biology, 8(3):264–270,
              2004.  URL http://www.sciencedirect.com/science/article/B6VRX-4CB69R1-2/2/
              84a354cec9064ed07baab6a07998c942.                          GPBiB
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=71)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 71  Average Size   50  Fitness     0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   228   229   230   231   232   233   234   235   236   237   238