Page 231 - 49A Field Guide to Genetic Programming
P. 231

BIBLIOGRAPHY                                                  217


            J. Stender, editor. Parallel Genetic Algorithms: Theory and Applications. IOS press,
              1993.
            C. R. Stephens and H. Waelbroeck. Effective degrees of freedom in genetic algorithms
              and the block hypothesis. In T. B¨ack, editor, Proceedings of the Seventh Interna-
              tional Conference on Genetic Algorithms (ICGA97), pages 34–40, East Lansing, 1997.
              Morgan Kaufmann.
            C. R. Stephens and H. Waelbroeck. Schemata evolution and building blocks. Evolutionary
              Computation, 7(2):109–124, 1999.

            T. Sterling. Beowulf-class clustered computing: Harnessing the power of parallelism in a
              pile of PCs. In J. R. Koza, et al., editors, Genetic Programming 1998: Proceedings of
              the Third Annual Conference, page 883, University of Wisconsin, Madison, Wisconsin,
              USA, 22-25 July 1998. Morgan Kaufmann. ISBN 1-55860-548-7. Invited talk.
            A. Stoica, J. Lohn, and D. Keymeulen, editors. The First NASA/DoD Workshop on
              Evolvable Hardware, Pasadena, California, 19-21 July 1999. IEEE Computer Society.
              URL http://cism.jpl.nasa.gov/ehw/events/nasa_eh/.
            W. A. Tackett.  Genetic generation of “dendritic” trees for image classifica-
              tion.  In Proceedings of WCNN93,  pages IV 646–649. IEEE Press,  July
              1993. URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/GP.
              feature.discovery.ps.Z.                                    GPBiB
            H. Takagi. Interactive evolutionary computation: Fusion of the capabilities of EC opti-
              mization and human evaluation. Proceedings of the IEEE, 89(9):1275–1296, September
              2001. ISSN 0018-9219. Invited Paper.                       GPBiB

            I. Tanev, T. Uozumi, and D. Akhmetov. Component object based single system image for
              dependable implementation of genetic programming on clusters. Cluster Computing
              Journal, 7(4):347–356, October 2004. ISSN 1386-7857 (Paper) 1573-7543 (Online).
              URL http://www.kluweronline.com/issn/1386-7857.            GPBiB
            J. Taylor, R. Goodacre, W. G. Wade, J. J. Rowland, and D. B. Kell. The deconvolution
              of pyrolysis mass spectra using genetic programming: application to the identification
              of some eubacterium species. FEMS Microbiology Letters, 160:237–246, 1998. GPBiB
            A. Teller. Genetic programming, indexed memory, the halting problem, and other cu-
              riosities. In Proceedings of the 7th annual Florida Artificial Intelligence Research
              Symposium, pages 270–274, Pensacola, Florida, USA, May 1994. IEEE Press. URL
              http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/Curiosities.ps. GPBiB
            A. Teller. Evolving programmers: The co-evolution of intelligent recombination operators.
              In P. J. Angeline and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2,
              chapter 3, pages 45–68. MIT Press, Cambridge, MA, USA, 1996. ISBN 0-262-01158-1.
              URL http://www.cs.cmu.edu/afs/cs/usr/astro/public/papers/AiGPII.ps.  GPBiB

            A. Teller and D. Andre. Automatically choosing the number of fitness cases: The rational
              allocation of trials. In J. R. Koza, et al., editors, Genetic Programming 1997: Pro-
              ceedings of the Second Annual Conference, pages 321–328, Stanford University, CA,
              USA, 13-16 July 1997. Morgan Kaufmann. URL http://www.cs.cmu.edu/afs/cs/usr/
              astro/public/papers/GR.ps.                                 GPBiB

            A. Teredesai and V. Govindaraju. GP-based secondary classifiers. Pattern Recognition,
              38(4):505–512, April 2005.                                 GPBiB
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=64)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 64  Average Size   50  Fitness     0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   226   227   228   229   230   231   232   233   234   235   236