Page 227 - 49A Field Guide to Genetic Programming
P. 227

BIBLIOGRAPHY                                                  213


              polytechnique.frzSzpaperszSzmarczSzAGP2.pdf/schoenauer96evolutionary.pdf.
              GPBiB
            M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel,
              editors. Parallel Problem Solving from Nature - PPSN VI 6th International Confer-
              ence, volume 1917 of LNCS, Paris, France, 16-20 September 2000. Springer Verlag.
              ISBN 3-540-41056-2. URL http://www.springer.de/cgi-bin/search_book.pl?isbn=
              3-540-41056-2.                                             GPBiB
            D. P. Searson, G. A. Montague, and M. J. Willis. Evolutionary design of process con-
              trollers. In In Proceedings of the 1998 United Kingdom Automatic Control Coun-
              cil International Conference on Control (UKACC International Conference on Con-
              trol ’98), volume 455 of IEE Conference Publications, University of Wales, Swansea,
              UK, 1-4 September 1998. Institution of Electrical Engineers (IEE).  URL http:
              //www.staff.ncl.ac.uk/d.p.searson/docs/Searsoncontrol98.pdf.  GPBiB
            L. Sekanina. Evolvable Components: From Theory to Hardware Implementations. Natural
              Computing. Springer-Verlag, 2003. ISBN 3-540-40377-9. URL http://www.fit.vutbr.
              cz/~sekanina/ehw/books.html.en.
            H.-S. Seok, K.-J. Lee, and B.-T. Zhang.  An on-line learning method for object-
              locating robots using genetic programming on evolvable hardware. In M. Sugisaka
              and H. Tanaka, editors, Proceedings of the Fifth International Symposium on Artifi-
              cial Life and Robotics, volume 1, pages 321–324, Oita, Japan, 26-28 January 2000. URL
              http://bi.snu.ac.kr/Publications/Conferences/International/AROB00.ps. GPBiB
            C. Setzkorn. On The Use Of Multi-Objective Evolutionary Algorithms For Classification
              Rule Induction. PhD thesis, University of Liverpool, UK, March 2005.  GPBiB
            S. C. Shah and A. Kusiak. Data mining and genetic algorithm based gene/SNP selection.
              Artificial Intelligence in Medicine, 31(3):183–196, July 2004. URL http://www.icaen.
              uiowa.edu/~ankusiak/Journal-papers/Gen_Shital.pdf.         GPBiB
            Y. Shan, H. Abbass, R. I. McKay, and D. Essam. AntTAG: a further study. In R. Sarker
              and B. McKay, editors, Proceedings of the Sixth Australia-Japan Joint Workshop on
              Intelligent and Evolutionary Systems, Australian National University, Canberra, Aus-
              tralia, 30 November 2002.                                  GPBiB
            Y. Shan, R. I. McKay, H. A. Abbass, and D. Essam. Program evolution with explicit
              learning: a new framework for program automatic synthesis. In R. Sarker, et al.,
              editors, Proceedings of the 2003 Congress on Evolutionary Computation CEC2003,
              pages 1639–1646, Canberra, 8-12 December 2003. IEEE Press. ISBN 0-7803-7804-0.
              URL http://citeseer.ist.psu.edu/560804.html.               GPBiB
            Y. Shan, R. I. McKay, R. Baxter, H. Abbass, D. Essam, and N. X. Hoai. Grammar
              model-based program evolution. In Proceedings of the 2004 IEEE Congress on Evo-
              lutionary Computation, pages 478–485, Portland, Oregon, 20-23 June 2004. IEEE
              Press. ISBN 0-7803-8515-2. URL http://sc.snu.ac.kr/courses/2006/fall/pg/aai/
              GP/shan/scfgcec04.pdf.                                     GPBiB
            Y. Shan, R. I. McKay, D. Essam, and H. A. Abbass. A survey of probabilistic model
              building genetic programming. In M. Pelikan, et al., editors, Scalable Optimization
              via Probabilistic Modeling: From Algorithms to Applications. Springer, 2006. ISBN
              3-540-34953-7.                                             GPBiB
            S. Sharabi and M. Sipper. GP-sumo: Using genetic programming to evolve sumobots.
              Genetic Programming and Evolvable Machines, 7(3):211–230, October 2006. ISSN
              1389-2576.                                                 GPBiB
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=50)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 50  Average Size   50  Fitness     0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   222   223   224   225   226   227   228   229   230   231   232