Page 191 - 49A Field Guide to Genetic Programming
P. 191
BIBLIOGRAPHY 177
K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer, E. Burke, P. Darwen, D. Dasgupta,
D. Floreano, J. Foster, M. Harman, O. Holland, P. L. Lanzi, L. Spector, A. Tetta-
manzi, D. Thierens, and A. Tyrrell, editors. Genetic and Evolutionary Computa-
tion – GECCO-2004, Part I, volume 3102 of Lecture Notes in Computer Science,
Seattle, WA, USA, 26-30 June 2004. Springer-Verlag. ISBN 3-540-22344-4. URL
http://www.springerlink.com/content/978-3-540-22344-3. GPBiB
M. Defoin Platel, M. Clergue, and P. Collard. Maximum homologous crossover for linear
genetic programming. In C. Ryan, et al., editors, Genetic Programming, Proceed-
ings of EuroGP’2003, volume 2610 of LNCS, pages 194–203, Essex, 14-16 April 2003.
Springer-Verlag. ISBN 3-540-00971-X. URL http://www.i3s.unice.fr/~defoin/
publications/eurogp_03.pdf. GPBiB
M. A. H. Dempster and C. M. Jones. A real-time adaptive trading system using genetic
programming. Quantitative Finance, 1:397–413, 2000. URL http://mahd-pc.jbs.cam.
ac.uk/archive/PAPERS/2000/geneticprogramming.pdf. GPBiB
M. A. H. Dempster, T. W. Payne, Y. Romahi, and G. W. P. Thompson. Computational
learning techniques for intraday FX trading using popular technical indicators. IEEE
Transactions on Neural Networks, 12(4):744–754, July 2001. ISSN 1045-9227. URL
http://mahd-pc.jbs.cam.ac.uk/archive/PAPERS/2000/ieeetrading.pdf. GPBiB
L. Deschaine. Using information fusion, machine learning, and global optimisation to
increase the accuracy of finding and understanding items interest in the subsurface.
GeoDrilling International, (122):30–32, May 2006. URL http://www.mining-journal.
com/gdi_magazine/pdf/GDI0605scr.pdf. GPBiB
L. M. Deschaine, R. A. Hoover, J. N. Skibinski, J. J. Patel, F. Francone, P. Nordin,
and M. J. Ades. Using machine learning to compliment and extend the accuracy of
UXO discrimination beyond the best reported results of the jefferson proving ground
technology demonstration. In 2002 Advanced Technology Simulation Conference, San
Diego, CA, USA, 14-18 April 2002. URL http://www.cs.ucl.ac.uk/staff/W.Langdon/
ftp/papers/deschaine/ASTC_2002_UXOFinder_Invention_Paper.pdf. GPBiB
L. M. Deschaine, J. J. Patel, R. D. Guthrie, J. T. Grimski, and M. J. Ades. Using linear
genetic programming to develop a C/C++ simulation model of a waste incinerator.
In M. Ades, editor, Advanced Technology Simulation Conference, Seattle, 22-26 April
2001. URL http://www.aimlearning.com/Environmental.Engineering.pdf. GPBiB
P. D’haeseleer. Context preserving crossover in genetic programming. In Proceedings of
the 1994 IEEE World Congress on Computational Intelligence, volume 1, pages 256–
261, Orlando, Florida, USA, 27-29 June 1994. IEEE Press. URL http://www.cs.ucl.
ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/WCCI94_CPC.ps.Z. GPBiB
P. D’haeseleer and J. Bluming. Effects of locality in individual and population evolution.
In K. E. Kinnear, Jr., editor, Advances in Genetic Programming, chapter 8, pages
177–198. MIT Press, 1994. URL http://cognet.mit.edu/library/books/view?isbn=
0262111888. GPBiB
S. Dignum and R. Poli. Generalisation of the limiting distribution of program sizes in
tree-based genetic programming and analysis of its effects on bloat. In D. Thierens,
et al., editors, GECCO ’07: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, volume 2, pages 1588–1595, London, 7-11 July 2007.
ACM Press. URL http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1588.
pdf. GPBiB
100 1000 2
Avg Size Avg Fitness sin(x)
Best Fitness GP (gen=4)
90
1.5
80
1
70
100
0.5
60
Generation 4 Average Size 50 Fitness 0
40 -0.5
10
30
(see Sec. B.4) 20 -1
-1.5
10
1 -2
0 20 40 60 80 100 0 20 40 60 80 100 0 1 2 3 4 5 6
Generations Generations x