Page 195 - 49A Field Guide to Genetic Programming
P. 195

BIBLIOGRAPHY                                                  181


              2002. Morgan Kaufmann Publishers. ISBN 1-55860-878-8. URL http://www.cs.bham.
              ac.uk/~wbl/biblio/gecco2002/GP272.pdf.                     GPBiB
            C. Gagne and M. Parizeau. Genetic engineering of hierarchical fuzzy regional represen-
              tations for handwritten character recognition. International Journal on Document
              Analysis and Recognition, 8(4):223–231, September 2006. URL http://vision.gel.
              ulaval.ca/fr/publications/Id_607/PublDetails.php.          GPBiB
            C. Gagn´e and M. Parizeau. Co-evolution of nearest neighbor classifiers. International
              Journal of Pattern Recognition and Artificial Intelligence, 21(5):921–946, August
              2007. ISSN 0218-0014. URL http://vision.gel.ulaval.ca/en/publications/Id_
              692/PublDetails.php.                                       GPBiB
            A. L. Garcia-Almanza and E. P. K. Tsang. Simplifying decision trees learned by genetic
              programming. In Proceedings of the 2006 IEEE Congress on Evolutionary Computa-
              tion, pages 7906–7912, Vancouver, 6-21 July 2006. IEEE Press. ISBN 0-7803-9487-9.
              URL http://privatewww.essex.ac.uk/~algarc/Publications/WCCI2006.pdf. GPBiB
            A. L. Garcia-Almanza and E. P. K. Tsang. Repository method to suit different investment
              strategies. In D. Srinivasan and L. Wang, editors, 2007 IEEE Congress on Evolutionary
              Computation, pages 790–797, Singapore, 25-28 September 2007. IEEE Computational
              Intelligence Society, IEEE Press. ISBN 1-4244-1340-0.      GPBiB

            C. Gathercole and P. Ross.  Dynamic training subset selection for supervised learn-
              ing in genetic programming. In Y. Davidor, et al., editors, Parallel Problem Solv-
              ing from Nature III, volume 866 of LNCS, pages 312–321, Jerusalem, 9-14 October
              1994. Springer-Verlag.  ISBN 3-540-58484-6.  URL http://citeseer.ist.psu.edu/
              gathercole94dynamic.html.                                  GPBiB

            C. Gathercole and P. Ross. The MAX problem for genetic programming - highlighting
              an adverse interaction between the crossover operator and a restriction on tree depth.
              Technical report, Department of Artificial Intelligence, University of Edinburgh, 80
              South Bridge, Edinburgh, EH1 1HN, UK, 1995. URL http://citeseer.ist.psu.edu/
              gathercole95max.html.                                      GPBiB

            C. Gathercole and P. Ross.  Tackling the boolean even N parity problem with ge-
              netic programming and limited-error fitness.  In J. R. Koza, et al., editors, Ge-
              netic Programming 1997: Proceedings of the Second Annual Conference, pages 119–
              127, Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.  URL
              http://citeseer.ist.psu.edu/79389.html.                    GPBiB

            S. Gelly, O. Teytaud, N. Bredeche, and M. Schoenauer. Universal consistency and bloat
              in GP. Revue d’Intelligence Artificielle, 20(6):805–827, 2006. ISSN 0992-499X. URL
              http://hal.inria.fr/docs/00/11/28/40/PDF/riabloat.pdf. Issue on New Methods
              in Machine Learning. Theory and Applications.              GPBiB

            Genetic Programming mailing list, 2001-2008. URL http://tech.groups.yahoo.com/
              group/genetic_programming/.
            R. J. Gilbert, R. Goodacre, A. M. Woodward, and D. B. Kell. Genetic programming: A
              novel method for the quantitative analysis of pyrolysis mass spectral data. ANALYT-
              ICAL CHEMISTRY, 69(21):4381–4389, 1997. URL http://pubs.acs.org/journals/
              ancham/article.cgi/ancham/1997/69/i21/pdf/ac970460j.pdf.   GPBiB

            A. Globus, J. Lawton, and T. Wipke. Automatic molecular design using evolutionary
              techniques. In A. Globus and D. Srivastava, editors, The Sixth Foresight Conference
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=6)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 6  Average Size   50  Fitness      0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   190   191   192   193   194   195   196   197   198   199   200