Page 190 - 49A Field Guide to Genetic Programming
P. 190
176 BIBLIOGRAPHY
J. M. Daida, A. M. Hilss, D. J. Ward, and S. L. Long. Visualizing tree structures in
genetic programming. Genetic Programming and Evolvable Machines, 6(1):79–110,
March 2005. ISSN 1389-2576. GPBiB
J. M. Daida, J. D. Hommes, T. F. Bersano-Begey, S. J. Ross, and J. F. Vesecky. Algo-
rithm discovery using the genetic programming paradigm: Extracting low-contrast
curvilinear features from SAR images of arctic ice. In P. J. Angeline and K. E.
Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 21, pages 417–
442. MIT Press, Cambridge, MA, USA, 1996. ISBN 0-262-01158-1. URL http:
//sitemaker.umich.edu/daida/files/GP2_cha21.pdf. GPBiB
C. Darwin. The Origin of Species. John Murray, penguin classics, 1985 edition, 1859.
ISBN 0-14-043205-1.
E. Dassau, B. Grosman, and D. R. Lewin. Modeling and temperature control of rapid
thermal processing. Computers and Chemical Engineering, 30(4):686–697, 15 February
2006. URL http://tx.technion.ac.il/~dlewin/publications/rtp_paper_v9.pdf.
GPBiB
T. E. Davis and J. C. Principe. A Markov chain framework for the simple genetic algo-
rithm. Evolutionary Computation, 1(3):269–288, 1993.
J. P. Day, D. B. Kell, and G. W. Griffith. Differentiation of phytophthora infestans
sporangia from other airborne biological particles by flow cytometry. Applied and
Environmental Microbiology, 68(1):37–45, January 2002. URL http://intl-aem.asm.
org/cgi/reprint/68/1/37.pdf. GPBiB
J. S. de Bonet, C. L. Isbell, Jr., and P. Viola. MIMIC: Finding optima by estimating
probability densities. In M. C. M. et. al., editor, Advances in Neural Information
Processing Systems, volume 9, page 424. MIT Press, 1997. URL http://citeseer.
ist.psu.edu/debonet96mimic.html.
E. D. de Jong and J. B. Pollack. Multi-objective methods for tree size control. Genetic
Programming and Evolvable Machines, 4(3):211–233, September 2003. ISSN 1389-
2576. URL http://www.cs.uu.nl/~dejong/publications/bloat.ps. GPBiB
E. D. de Jong, R. A. Watson, and J. B. Pollack. Reducing bloat and promoting diversity
using multi-objective methods. In L. Spector, et al., editors, Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO-2001), pages 11–18, San
Francisco, California, USA, 7-11 July 2001. Morgan Kaufmann. ISBN 1-55860-774-9.
URL http://www.demo.cs.brandeis.edu/papers/rbpd_gecco01.pdf. GPBiB
J. S. de Sousa, L. de C. T. Gomes, G. B. Bezerra, L. N. de Castro, and F. J. Von Zuben. An
immune-evolutionary algorithm for multiple rearrangements of gene expression data.
Genetic Programming and Evolvable Machines, 5(2):157–179, June 2004. ISSN 1389-
2576. GPBiB
C. De Stefano, A. D. Cioppa, and A. Marcelli. Character preclassification
based on genetic programming. Pattern Recognition Letters, 23(12):1439–1448,
2002. URL http://www.sciencedirect.com/science/article/B6V15-45J91MV-4/2/
3e5c2ac0c51428d0f7ea9fc0142f6790. GPBiB
K. Deb. Multi-objective optimization using evolutionary algorithms. Wiley, 2001.
K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimisation: Nsga-ii. In PPSN VI: Proceedings
of the 6th International Conference on Parallel Problem Solving from Nature, pages
849–858, London, UK, 2000. Springer-Verlag. ISBN 3-540-41056-2.