Page 187 - 49A Field Guide to Genetic Programming
P. 187
BIBLIOGRAPHY 173
Genetic and evolutionary computation, volume 2, pages 1559–1565, London, 7-11 July
2007. ACM Press. URL http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/
p1559.pdf. GPBiB
B. F. Buxton, W. B. Langdon, and S. J. Barrett. Data fusion by intelligent classifier
combination. Measurement and Control, 34(8):229–234, October 2001. URL http:
//www.cs.ucl.ac.uk/staff/W.Langdon/mc/. GPBiB
W. Cai, A. Pacheco-Vega, M. Sen, and K. T. Yang. Heat transfer correlations by symbolic
regression. International Journal of Heat and Mass Transfer, 49(23-24):4352–4359,
November 2006. GPBiB
E. Cant´u-Paz, J. A. Foster, K. Deb, L. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. K.
Standish, G. Kendall, S. W. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A.
Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, and J. F. Miller, editors. Genetic
and Evolutionary Computation – GECCO 2003, Part I, volume 2723 of Lecture Notes
in Computer Science, Chicago, IL, USA, 12-16 July 2003. Springer. ISBN 3-540-40602-
6. GPBiB
F. Castillo, A. Kordon, and G. Smits. Robust pareto front genetic programming parame-
ter selection based on design of experiments and industrial data. In R. L. Riolo, et al.,
editors, Genetic Programming Theory and Practice IV, volume 5 of Genetic and Evo-
lutionary Computation, chapter 2, pages –. Springer, Ann Arbor, 11-13 May 2006a.
ISBN 0-387-33375-4. GPBiB
F. Castillo, A. Kordon, G. Smits, B. Christenson, and D. Dickerson. Pareto front ge-
netic programming parameter selection based on design of experiments and industrial
data. In M. Keijzer, et al., editors, GECCO 2006: Proceedings of the 8th annual
conference on Genetic and evolutionary computation, volume 2, pages 1613–1620,
Seattle, Washington, USA, 8-12 July 2006b. ACM Press. ISBN 1-59593-186-4. URL
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2006/docs/p1613.pdf. GPBiB
M. Chami and D. Robilliard. Inversion of oceanic constituents in case I and II waters with
genetic programming algorithms. Applied Optics, 41(30):6260–6275, October 2002.
URL http://ao.osa.org/ViewMedia.cfm?id=70258&seq=0. GPBiB
A. Channon. Unbounded evolutionary dynamics in a system of agents that actively pro-
cess and transform their environment. Genetic Programming and Evolvable Machines,
7(3):253–281, October 2006. ISSN 1389-2576.
D. L. Chao and S. Forrest. Information immune systems. Genetic Programming and
Evolvable Machines, 4(4):311–331, December 2003. ISSN 1389-2576.
S. M. Cheang, K. S. Leung, and K. H. Lee. Genetic parallel programming: Design and
implementation. Evolutionary Computation, 14(2):129–156, Summer 2006. ISSN 1063-
6560. GPBiB
K. Chellapilla. Evolving computer programs without subtree crossover. IEEE Transac-
tions on Evolutionary Computation, 1(3):209–216, September 1997a. GPBiB
K. Chellapilla. Evolutionary programming with tree mutations: Evolving computer pro-
grams without crossover. In J. R. Koza, et al., editors, Genetic Programming 1997:
Proceedings of the Second Annual Conference, pages 431–438, Stanford University, CA,
USA, 13-16 July 1997b. Morgan Kaufmann.
100 1000 2
Avg Size Avg Fitness sin(x)
Best Fitness GP (gen=2)
90
1.5
80
1
70
100
0.5
60
Generation 2 Average Size 50 Fitness 0
40 -0.5
10
30
(see Sec. B.4) 20 -1
-1.5
10
1 -2
0 20 40 60 80 100 0 20 40 60 80 100 0 1 2 3 4 5 6
Generations Generations x