Page 187 - 49A Field Guide to Genetic Programming
P. 187

BIBLIOGRAPHY                                                  173


              Genetic and evolutionary computation, volume 2, pages 1559–1565, London, 7-11 July
              2007. ACM Press. URL http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/
              p1559.pdf.                                                 GPBiB

            B. F. Buxton, W. B. Langdon, and S. J. Barrett. Data fusion by intelligent classifier
              combination. Measurement and Control, 34(8):229–234, October 2001. URL http:
              //www.cs.ucl.ac.uk/staff/W.Langdon/mc/.                    GPBiB

            W. Cai, A. Pacheco-Vega, M. Sen, and K. T. Yang. Heat transfer correlations by symbolic
              regression. International Journal of Heat and Mass Transfer, 49(23-24):4352–4359,
              November 2006.                                             GPBiB
            E. Cant´u-Paz, J. A. Foster, K. Deb, L. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. K.
              Standish, G. Kendall, S. W. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A.
              Potter, A. C. Schultz, K. A. Dowsland, N. Jonoska, and J. F. Miller, editors. Genetic
              and Evolutionary Computation – GECCO 2003, Part I, volume 2723 of Lecture Notes
              in Computer Science, Chicago, IL, USA, 12-16 July 2003. Springer. ISBN 3-540-40602-
              6.                                                         GPBiB

            F. Castillo, A. Kordon, and G. Smits. Robust pareto front genetic programming parame-
              ter selection based on design of experiments and industrial data. In R. L. Riolo, et al.,
              editors, Genetic Programming Theory and Practice IV, volume 5 of Genetic and Evo-
              lutionary Computation, chapter 2, pages –. Springer, Ann Arbor, 11-13 May 2006a.
              ISBN 0-387-33375-4.                                        GPBiB
            F. Castillo, A. Kordon, G. Smits, B. Christenson, and D. Dickerson. Pareto front ge-
              netic programming parameter selection based on design of experiments and industrial
              data. In M. Keijzer, et al., editors, GECCO 2006: Proceedings of the 8th annual
              conference on Genetic and evolutionary computation, volume 2, pages 1613–1620,
              Seattle, Washington, USA, 8-12 July 2006b. ACM Press. ISBN 1-59593-186-4. URL
              http://www.cs.bham.ac.uk/~wbl/biblio/gecco2006/docs/p1613.pdf.  GPBiB
            M. Chami and D. Robilliard. Inversion of oceanic constituents in case I and II waters with
              genetic programming algorithms. Applied Optics, 41(30):6260–6275, October 2002.
              URL http://ao.osa.org/ViewMedia.cfm?id=70258&seq=0.        GPBiB
            A. Channon. Unbounded evolutionary dynamics in a system of agents that actively pro-
              cess and transform their environment. Genetic Programming and Evolvable Machines,
              7(3):253–281, October 2006. ISSN 1389-2576.
            D. L. Chao and S. Forrest. Information immune systems. Genetic Programming and
              Evolvable Machines, 4(4):311–331, December 2003. ISSN 1389-2576.

            S. M. Cheang, K. S. Leung, and K. H. Lee. Genetic parallel programming: Design and
              implementation. Evolutionary Computation, 14(2):129–156, Summer 2006. ISSN 1063-
              6560.                                                      GPBiB

            K. Chellapilla. Evolving computer programs without subtree crossover. IEEE Transac-
              tions on Evolutionary Computation, 1(3):209–216, September 1997a.  GPBiB
            K. Chellapilla. Evolutionary programming with tree mutations: Evolving computer pro-
              grams without crossover. In J. R. Koza, et al., editors, Genetic Programming 1997:
              Proceedings of the Second Annual Conference, pages 431–438, Stanford University, CA,
              USA, 13-16 July 1997b. Morgan Kaufmann.
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=2)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 2  Average Size   50  Fitness      0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   182   183   184   185   186   187   188   189   190   191   192