Page 189 - 49A Field Guide to Genetic Programming
P. 189

BIBLIOGRAPHY                                                  175


            P. Collet. Genetic programming. In J.-P. Rennard, editor, Handbook of Research on
              Nature-Inspired Computing for Economics and Management, volume I, chapter V,
              pages 59–73. Idea Group Inc., 1200 E. Colton Ave, 2007. ISBN 1-59140-984-5. GPBiB
            P. Collet, M. Tomassini, M. Ebner, S. M. Gustafson, and A. Ek´art, editors. Proceedings
              of the 9th European Conference on Genetic Programming, volume 3905 of Lecture
              Notes in Computer Science, Budapest, Hungary, 10 - 12 April 2006. Springer. ISBN
              3-540-33143-3. URL http://www.springerlink.com/openurl.asp?genre=issue&issn=
              0302-9743&volume=3905.                                     GPBiB
            R. J. Collins. Studies in Artificial Evolution. PhD thesis, UCLA, Artificial Life Labora-
              tory, Department of Computer Science, University of California, Los Angeles, LA CA
              90024, USA, 1992.
            O. Cordon, E. Herrera-Viedma, and M. Luque. Evolutionary learning of boolean queries
              by multiobjective genetic programming. In J. J. Merelo-Guervos, et al., editors, Paral-
              lel Problem Solving from Nature - PPSN VII, number 2439 in Lecture Notes in Com-
              puter Science, LNCS, pages 710–719, Granada, Spain, 7-11 September 2002. Springer-
              Verlag. ISBN 3-540-44139-5. URL http://link.springer.de/link/service/series/
              0558/bibs/2439/24390710.htm.                               GPBiB
            F. Corno, E. Sanchez, and G. Squillero. Evolving assembly programs: how games help
              microprocessor validation. Evolutionary Computation, IEEE Transactions on, 9(6):
              695–706, 2005.
            D. Costelloe and C. Ryan. Towards models of user preferences in interactive musical
              evolution. In D. Thierens, et al., editors, GECCO ’07: Proceedings of the 9th an-
              nual conference on Genetic and evolutionary computation, volume 2, pages 2254–2254,
              London, 7-11 July 2007. ACM Press. URL http://www.cs.bham.ac.uk/~wbl/biblio/
              gecco2007/docs/p2254.pdf.                                  GPBiB
            N. L. Cramer. A representation for the adaptive generation of simple sequential programs.
              In J. J. Grefenstette, editor, Proceedings of an International Conference on Genetic Al-
              gorithms and the Applications, pages 183–187, Carnegie-Mellon University, Pittsburgh,
              PA, USA, 24-26 July 1985. URL http://www.sover.net/~nichael/nlc-publications/
              icga85/index.html.                                         GPBiB
            E. F. Crane and N. F. McPhee. The effects of size and depth limits on tree based genetic
              programming. In T. Yu, et al., editors, Genetic Programming Theory and Practice III,
              volume 9 of Genetic Programming, chapter 15, pages 223–240. Springer, Ann Arbor,
              12-14 May 2005. ISBN 0-387-28110-X.                        GPBiB
            R. Crawford-Marks and L. Spector. Size control via size fair genetic operators in the
              PushGP genetic programming system. In W. B. Langdon, et al., editors, GECCO
              2002: Proceedings of the Genetic and Evolutionary Computation Conference, pages
              733–739, New York, 9-13 July 2002. Morgan Kaufmann Publishers. ISBN 1-55860-878-
              8. URL http://alum.hampshire.edu/~rpc01/gp234.pdf.         GPBiB
            R. L. Crepeau. Genetic evolution of machine language software. In J. P. Rosca, editor,
              Proceedings of the Workshop on Genetic Programming: From Theory to Real-World
              Applications, pages 121–134, Tahoe City, California, USA, 9 July 1995. URL http:
              //www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/GEMS_Article.pdf.  GPBiB
            R. Curry, P. Lichodzijewski, and M. I. Heywood. Scaling genetic programming to large
              datasets using hierarchical dynamic subset selection. IEEE Transactions on Systems,
              Man, and Cybernetics: Part B - Cybernetics, 37(4):1065–1073, August 2007. ISSN
              1083-4419.  URL http://www.cs.dal.ca/~mheywood/X-files/GradPubs.html#curry.
              GPBiB
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=3)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 3  Average Size   50  Fitness      0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   184   185   186   187   188   189   190   191   192   193   194