Page 193 - 49A Field Guide to Genetic Programming
P. 193

BIBLIOGRAPHY                                                  179


            S. E. Eklund. A massively parallel architecture for distributed genetic algorithms. Parallel
              Computing, 30(5-6):647–676, 2004. URL http://www.sciencedirect.com/science/
              article/B6V12-4CDS49V-1/2/5ba1531eae2c9d8b336f1e90cc0ba5e9.  GPBiB
            D. I. Ellis, D. Broadhurst, and R. Goodacre. Rapid and quantitative detection of the mi-
              crobial spoilage of beef by fourier transform infrared spectroscopy and machine learn-
              ing. Analytica Chimica Acta, 514(2):193–201, 2004. URL http://dbkgroup.org/dave_
              files/ACAbeef04.pdf.                                       GPBiB
            D. I. Ellis, D. Broadhurst, D. B. Kell, J. J. Rowland, and R. Goodacre. Rapid and
              quantitative detection of the microbial spoilage of meat by fourier transform infrared
              spectroscopy and machine learning. Applied and Environmental Microbiology, 68(6):
              2822–2828, June 2002. URL http://dbkgroup.org/Papers/app_%20env_microbiol_
              68_(2822).pdf.                                             GPBiB
            R. Eriksson and B. Olsson. Adapting genetic regulatory models by genetic programming.
              Biosystems, 76(1-3):217–227, 2004. URL http://www.sciencedirect.com/science/
              article/B6T2K-4D09KY2-7/2/1abfe196bb4afc60afc3311cadb75d66.  GPBiB
            A. I. Esparcia-Alcazar and K. C. Sharman. Genetic programming techniques that evolve
              recurrent neural networks architectures for signal processing. In IEEE Workshop on
              Neural Networks for Signal Processing, Seiko, Kyoto, Japan, September 1996. GPBiB
            C. Evans,  P. J. Fleming,  D. C. Hill,  J. P. Norton,  I. Pratt,  D. Rees,
              and K. Rodriguez-Vazquez.  Application of system identification techniques
              to aircraft gas turbine engines.  Control Engineering Practice, 9(2):135–148,
              2001.  URL http://www.sciencedirect.com/science/article/B6V2H-4280YP2-3/1/
              24d44180070f91dea854032d98f9187a.                          GPBiB

            F. Federman, G. Sparkman, and S. Watt. Representation of music in a learning classifier
              system utilizing bach chorales. In W. Banzhaf, et al., editors, Proceedings of the
              Genetic and Evolutionary Computation Conference, volume 1, page 785, Orlando,
              Florida, USA, 13-17 July 1999. Morgan Kaufmann. ISBN 1-55860-611-4.
            M. J. Felton. Survival of the fittest in drug design. Modern Drug Discovery, 3(9):49–50,
              November/December 2000. ISSN 1532-4486. URL http://pubs.acs.org/subscribe/
              journals/mdd/v03/i09/html/felton.html.                     GPBiB
            F. Fernandez, J. M. Sanchez, M. Tomassini, and J. A. Gomez. A parallel genetic pro-
              gramming tool based on PVM. In J. Dongarra, et al., editors, Recent Advances in
              Parallel Virtual Machine and Message Passing Interface, Proceedings of the 6th Eu-
              ropean PVM/MPI Users’ Group Meeting, volume 1697 of Lecture Notes in Computer
              Science, pages 241–248, Barcelona, Spain, September 1999. Springer-Verlag. ISBN
              3-540-66549-8.                                             GPBiB
            F. Fernandez, M. Tomassini, and L. Vanneschi. An empirical study of multipopulation ge-
              netic programming. Genetic Programming and Evolvable Machines, 4(1):21–51, March
              2003. ISSN 1389-2576.                                      GPBiB
            G. Folino, C. Pizzuti, and G. Spezzano. A scalable cellular implementation of parallel
              genetic programming. IEEE Transactions on Evolutionary Computation, 7(1):37–53,
              February 2003.                                             GPBiB

            J. A. Foster. Review: Discipulus: A commercial genetic programming system. Genetic
              Programming and Evolvable Machines, 2(2):201–203, June 2001. ISSN 1389-2576.
              GPBiB
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=5)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 5  Average Size   50  Fitness      0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   188   189   190   191   192   193   194   195   196   197   198