Page 6 - 71 the abc of dft_opt
P. 6

CONTENTS                                                            11     12                                                             CONTENTS
                                    Finite systems
       Kato’s cusp at nucleus: dn/dr|  = −2Z α n(R α )
                              r=R α
                              %           √         "           √
                                        β − 2Ir
       Large r in Coulombic system:  n(r) → Ar e  ,  β =  α Z α − N + 1/ 2I
       Exchange potential: v X (r) → −1/r
                                          4
       Correlation potential: v C (r) → −α(N − 1)/2r , where α(N − 1) is the polarizability of the
       N − 1 electron system.
                             3
                                   2
       Von-Weisacker: T VW [n] = d r |∇n| /(8n) (exact for N = 1, 2)
                           !
                    S
       Exchange: E X = −U/N for N = 1, 2
       Correlation: E C = 0 for N = 1
                              (2)     (3)
       High-density limit: E C [n γ ] = E C [n] + E C [n]/γ + . . . as γ → ∞
       Low-density limit: E C [n γ ] = γB[n] + γ 3/2 C[n] + . . . as γ → 0.
                                 Uniform gas and LSD
       Measures of the local density Wigner-Seitz radius: r s (r) = (3/(4πn(r)) 1/3
                                2    1
        Fermi wave vector: k F (r) = (3π n(r)) 3
                                   %
        Thomas-Fermi wavevector: k s (r) = 4k F (r)/π
       Measure of the local spin-polarization:
        Relative polarization: ζ(r) = (n ↑ (r) − n ↓ (r))/n(r)
                                 2
       Kinetic energy: t unif (n) = (3/10)k (n)n
                                 F
                   S
       exchange energy: e unif (n) = n& unif (n), where & unif (n) = (3k F (n)/4π),
                     X        X           X
       correlation energy: & unif (r s ) → 0.0311 ln r s − 0.047 + 0.009r s ln r s − 0.017r s  (r s → 0)
                      C
                               3
       Thomas-Fermi: T S TF [n] = A S d r n 5/3 (r) where A s = 2.871.
                             !
                        3
       LSD: E X LDA [n] = A X d r n 4/3 (r) where A X = −(3/4)(3/π) 1/3  = −0.738.
                      !
                      3
                    !
        E LSD [n ↑ , n ↓ ] = d r n(r)& unif (r s (r), ζ(r)
         C                  C
                                  Gradient expansions   '
                              3
                                                    2
                                 &
                            !
       Gradient expansion: A[n] = d r a(n(r)) + b(n(r)|∇n(r)| . . .
       Gradient expansion approximation: A GEA [n] = A LDA [n] + ∆A GEA [n]
       Reduced density gradient: s(r) = |∇n(r)|/(2k F (r)n(r)
       Correlation gradient: t(r) = |∇n(r)|/(2k s (r)n(r)
       Polarization enhancement: φ(ζ) = ((1 + ζ) 2/3  + (1 − ζ) 2/3 )/2
                             3
                                   (
                                         2
                                            )
                           !
       Kinetic energy: T S [n] = A S d r n 5/3  1 + 5s /27 or ∆T S GEA [n] = T VW [n]/9.
                                            2
                                3
                              !
       Exchange energy: E X [n] = A X d r n 4/3  ( 1 + 10s /81 )
                                            2
                                                3
                                                            2
       High-density correlation energy: ∆E GEA  = (2/3π ) d r n(r)φ(ζ(r))t (r)
                                              !
                                  C
                                              3
       Generalized gradient approximation: A GGA [n] = d r a(n, |∇n|)
                                            !
                                3
       Enhancement factor: E GGA  = d r e unif (n(r)) F XC (r s (r), s(r))
                              !
                        XC         X
   1   2   3   4   5   6   7   8   9   10   11