Page 5 - 71 the abc of dft_opt
P. 5

CONTENTS                                                             9     10                                                             CONTENTS
                                                                                                         !
                                                                                                               !
                              Definitions and notation                             Density matrix: γ(x, x ) = N dx 2 . . . dx N Ψ (x, x 2 , . . . , x N )Ψ(x , x 2 , . . . , x N )
                                                                                                                      ∗
                                                                                                   #
                                                                                                                                     #
                                     Coordinates                                   properties: γ(x, x) = n(x), γ(x , x) = γ(x, x )
                                                                                                           #
                                                                                                                     #
                                                                                                           2
                                                                                                        3
       Position vector: r = (x, y, z), r = |r|.                                    kinetic energy: T = − 1 2  !  d r∇ γ(r, r )| r=r !
                                                                                                                #
       Spin index: σ =↑ or ↓ = α or β.                                                                    N σ
                                                                                                                    #
                                                                                                   #        φ (r)φ iσ (r )
                                                                                                             ∗
                                                                                                          "
                                                                                   Kohn-Sham: γ S (x, x ) = δ σσ !
       Space-spin vector: x = (r, σ).                                                                    i=1  iσ                         2
                     3
                                                                                                              !
                                                                                                                    !
                                                                                                  #
                                                                                                                              #
       Sums:  !  dx =  " !  d r                                                   Pair Density: P(x, x ) = N(N − 1) dx 3 . . . dx N |Ψ(x, x , x 3 , . . . , x N )|
                  σ                                                                        !  #     #                 #         #      #
                                      Operators                                    properties: dx P(x, x ) = (N − 1)n(x), P(x , x) = P(x, x ), P(x, x ) ≥ 0
                         N                                                                           1  !  3  !  3 #  #   #
                   ˆ    1 "  2                                                     potential energy:V ee =  2  d r d r P(r, r )/|r − r |
       Kinetic energy: T = − 2  ∇ .
                            i
                                                                                                                      # 2
                          i                                                        Kohn-Sham: P X (x, x ) = n(x)n(x ) − |γ S (x, x )|
                                                                                                             #
                                                                                                   #
                     ˆ  ˆ    ˆ
       Potential energy: V = V ee + V ext                                         Exchange-correlation hole around r at coupling constant λ:
                      ˆ
       Coulomb repulsion: V ee =  1 "  1/|r i − r j |.                            P (r, r + u) = n(r) [n(r + u) + n (r, r + u)]
                                                                                                             λ
                                                                                    λ
                           2
                            i!=j                                                                             XC
                                                                                                              # 2
                                                                                   Kohn-Sham: n X (x, x ) = −|γ S (x, x )| /n(x)
                                                                                                   #
                      ˆ
                           N "
       External potential: V ext =  v ext (r i )                                                          !  3               !  3  λ
                           i=1                                                     properties: n X (r, r + u) ≤ 0, d u n X (r, r + u) = −1, d u n (r, r + u) = 0
                                                                                                                                   C
                                    Wavefunctions                                 Pair correlation function: g (x, x ) = P (x, x )/(n(x)n(x ))
                                                                                                                λ
                                                                                                       λ
                                                                                                                              #
                                                                                                                     #
                                                                                                           #
                                                          ˆ  ˆ
       Physical wavefunction: Ψ[n](x 1 ...x N ) has density n and minimizes T + V ee  Electron-electron cusp condition: dg (r, u)/du| u=0 = λg (r, u = 0)
                                                                                                                             λ
                                                                                                              λ
        Kohn-Sham: Φ[n](x 1 ...x N ) has density n and minizes T ˆ                                         Uniform coordinate scaling
                       p
       Φ(x 1 ...x N ) =  " p (−1) φ 1 (x p 1  )...φ N (x p N )                    Density: n(r) → n γ (r) = γ n(γr)
                                                                                                       3
                       p
       Φ(x 1 ...x N ) =  " p (−1) φ 1 (x p 1  )...φ N (x p N )                    Wavefunction: Ψ γ (r 1 . . . r N ) = γ 3N/2 Ψ(γr 1 . . . γr N )
       where φ i (x) and & i are the i-th KS orbital and energy, with i = α, σ.
                                                                                  Ground states: Φ[n γ ] = Φ γ [n],  but Ψ[n γ ] *= Ψ γ [n]
                                      Energies                                                               2
                                   ˆ   ˆ           ˆ                              Fundamental inequality: F[n γ ] ≤ γ T[n] + γV ee [n]
       Universal functional: F[n] = min%Ψ|T + V ee |Ψ& = %Ψ[n]|T|Ψ[n]&                                            2
                             Ψ→n                                                  Non-interacting kinetic energy: T S [n γ ] = γ T S [n]
                              ˆ
       Kinetic energy: T[n] = %Ψ[n]|T|Ψ[n]&.                                      Exchange and Hartree energies: E X [n γ ] = γE X [n],  U[n γ ] = γU[n]
                                                                                                           2
                                                                   3
                                                      ˆ
                                           ˆ
       Non-interacting kinetic energy: T s [n] = min%Φ|T|Φ& = %Φ[n]|T|Φ[n]& =  N " !  d r|∇φ i (r)| 2  Kinetic and potential: T[n γ ] < γ T[n],  V ee [n γ ] > γV ee [n]  (γ > 1)
                                                                                                                           2
                                     Φ→n                      i=1                 Correlation energies: E C [n γ ] > γE C [n],  T C [n γ ] < γ T C [n]  (γ > 1)
                                       ˆ
       Coulomb repulsion energy: V ee [n] = %Ψ[n]|V ee |Ψ[n]&.                                          ˆ
                            3
       Hartree energy: U[n] =  1 2  !  d r  !  d r n(r) n(r )/|r − r |            Virial theorem: 2T = %r · ∇V & 3
                                          #
                                 3 #
                                                 #
                                                                                                       !
                                   1 " " !  3  !  3 # ∗  ∗  #  #           #       N electrons: 2T + V ee = d r n(r) r · ∇v ext (r)
       Exchange: E X = %Φ|V ee |Φ& − U = −  d r d r φ (r) φ (r ) φ iσ (r ) φ jσ (r)/|r − r |    !  3
                                                  iσ
                                                       jσ
                                   2 σ  i,j                                        XC: E XC + T C = d r n(r) r · ∇v XC (r)
                                      occ
       Kinetic-correlation: T C [n] = T[n] − T S [n]                                                             Spin scaling
                                                                                                   1
       Potential-correlation: U XC [n] = V ee [n] − U[n]                          Kinetic: T S [n ↑ , n ↓ ] = (T S [2n ↑ ] + T S [2n ↓ ])
                                                                                                   2
                                                                ˆ   ˆ                                1
       Exchange-correlation: E XC [n] = T[n] − T S [n] + V ee [n] − U[n] = %Ψ[n]|T + V ee |Ψ[n]& −  Exchange: E X [n ↑ , n ↓ ] = (E X [2n ↑ ] + E X [2n ↓ ])
                                                                                                     2
            ˆ   ˆ
       %Φ[n]|T + V ee |Φ[n]&                                                                                 Adiabatic connection
                                                                                                                  λ
                                                                                                                            λ
                                                                                                                      λ
                                      Potentials                                  Hellmann-Feynman: E = E λ=0  +  ! 0 1  dλ%Ψ |dH /dλ|Ψ &
                                          3
                                                                                                                               ˆ
                                                                                                                          ˆ
                                        !
                                                                                               λ
       Functional derivative: F[n + δn] − F[n] = d r δn(r) δF[n]/δn(r)            Wavefunction: Ψ [n] has density n and mininimizes T + λV ee ;
                                                                                                    λ
       Kohn-Sham: v S (r) = −δT S /δn(r) + µ                                       relation to scaling: Ψ [n] = Ψ λ [n 1/λ ]
                              !                                                            λ      2
                                           #
                                3 #
                                     #
       Hartree: v H (r) = δU/δn(r) = d r n(r )/|r − r |                           Energies: E [n] = λ E[n 1/λ ]
       Exchange-correlation: v ext (r) = v S (r) + v H (r) + v XC (r)              kinetic: T [n] = T S [n]
                                                                                           λ
                                                                                           S
                                                                                                           λ
                                                                                             λ
                              Densities and density matrices                       exchange: E [n] = λE X [n], U [n] = λU[n]
                                                                                             X                  #                  $
                                                                                                                           (3)
                                                                                                                   (2)
                                                                                                     2
                                                       2
                                                                                              λ
                                !
       Spin density: n(x) = n σ (r) = N dx 2 . . . dx N |Ψ(x, x 2 . . . , x N )| =  N "  |φ i (x)| 2  correlation: E [n] = λ E C [n 1/λ ] = λ 2  E C [n] + λE S [n] + . . . for small λ
                                                           i=1                                C
                                                                                                                     λ
                         !
        properties: n(x) ≥ 0, dx n(x) = N                                         ACF: E XC =  ! 0 1  dλ U XC (λ), where U XC (λ) = U /λ
                                                                                                                     XC
   1   2   3   4   5   6   7   8   9   10