Page 213 - 49A Field Guide to Genetic Programming
P. 213

BIBLIOGRAPHY                                                  199


            P. Marenbach. Using prior knowledge and obtaining process insight in data based mod-
              elling of bioprocesses. System Analysis Modelling Simulation, 31:39–59, 1998. GPBiB
            J. P. Marney, D. Miller, C. Fyfe, and H. F. E. Tarbert. Risk adjusted returns to technical
              trading rules: a genetic programming approach. In 7th International Conference of
              Society of Computational Economics, Yale, 28-29 June 2001.  GPBiB
            M. C. Martin. Evolving visual sonar: Depth from monocular images. Pattern Recognition
              Letters, 27(11):1174–1180, August 2006. URL http://martincmartin.com/papers/
              EvolvingVisualSonarPatternRecognitionLetters2006.pdf. Evolutionary Computer
              Vision and Image Understanding.                            GPBiB
            P. Martin. A hardware implementation of a genetic programming system using FPGAs
              and Handel-C. Genetic Programming and Evolvable Machines, 2(4):317–343, Decem-
              ber 2001. ISSN 1389-2576. URL http://www.naiadhome.com/gpem-d.pdf.  GPBiB
            P. Martin. A pipelined hardware implementation of genetic programming using FPGAs
              and Handel-C. In J. A. Foster, et al., editors, Genetic Programming, Proceedings of the
              5th European Conference, EuroGP 2002, volume 2278 of LNCS, pages 1–12, Kinsale,
              Ireland, 3-5 April 2002. Springer-Verlag. ISBN 3-540-43378-3.  GPBiB
            P. Martin and R. Poli. Crossover operators for A hardware implementation of GP using
              FPGAs and Handel-C. In W. B. Langdon, et al., editors, GECCO 2002: Proceedings
              of the Genetic and Evolutionary Computation Conference, pages 845–852, New York,
              9-13 July 2002. Morgan Kaufmann Publishers. ISBN 1-55860-878-8. URL http://
              www.cs.bham.ac.uk/~wbl/biblio/gecco2002/gp284.ps.          GPBiB
            S. Martinez-Jaramillo and E. P. K. Tsang.  An heterogeneous, endogenous and co-
              evolutionary GP-based financial market. IEEE Transactions on Evolutionary Compu-
              tation, 2007. accepted for publication.
            P. Massey, J. A. Clark, and S. Stepney. Evolution of a human-competitive quantum
              fourier transform algorithm using genetic programming. In H.-G. Beyer, et al., edi-
              tors, GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary
              computation, volume 2, pages 1657–1663, Washington DC, USA, 25-29 June 2005.
              ACM Press. ISBN 1-59593-010-8. URL http://www.cs.bham.ac.uk/~wbl/biblio/
              gecco2005/docs/p1657.pdf.                                  GPBiB
            S. R. Maxwell, III. Why might some problems be difficult for genetic programming to find
              solutions? In J. R. Koza, editor, Late Breaking Papers at the Genetic Programming
              1996 Conference Stanford University July 28-31, 1996, pages 125–128, Stanford Uni-
              versity, CA, USA, 28–31 July 1996. Stanford Bookstore. ISBN 0-18-201031-7. GPBiB
            S. R. Maxwell, III. Experiments with a coroutine model for genetic programming. In
              Proceedings of the 1994 IEEE World Congress on Computational Intelligence, vol-
              ume 1, pages 413–417a, Orlando, Florida, USA, 27-29 June 1994. IEEE Press. ISBN
              0-7803-1899-4.  URL http://ieeexplore.ieee.org/iel2/1125/8059/00349915.pdf?
              isNumber=8059.                                             GPBiB
            J. McCormack. New challenges for evolutionary music and art. SIGEvolution, 1(1):5–11,
              April 2006. URL http://www.sigevolution.org/2006/01/issue.pdf.  GPBiB
            A. C. McGovern, D. Broadhurst, J. Taylor, N. Kaderbhai, M. K. Winson, D. A. Small,
              J. J. Rowland, D. B. Kell, and R. Goodacre. Monitoring of complex industrial biopro-
              cesses for metabolite concentrations using modern spectroscopies and machine learning:
              Application to gibberellic acid production. Biotechnology and Bioengineering, 78(5):
              527–538, 5 June 2002. URL http://dbkgroup.org/Papers/biotechnol_bioeng_78_
              (527).pdf.                                                 GPBiB
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=21)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 21  Average Size   50  Fitness     0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   208   209   210   211   212   213   214   215   216   217   218