Page 209 - 49A Field Guide to Genetic Programming
P. 209

BIBLIOGRAPHY                                                  195


            W. B. Langdon and J. P. Nordin. Seeding GP populations. In R. Poli, et al., editors,
              Genetic Programming, Proceedings of EuroGP’2000, volume 1802 of LNCS, pages 304–
              315, Edinburgh, 15-16 April 2000. Springer-Verlag. ISBN 3-540-67339-3. URL http://
              www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL_eurogp2000_seed.pdf. GPBiB
            W. B. Langdon and R. Poli. Fitness causes bloat. In P. K. Chawdhry, et al., editors, Soft
              Computing in Engineering Design and Manufacturing, pages 13–22. Springer-Verlag
              London, 23-27 June 1997. ISBN 3-540-76214-0. URL http://www.cs.bham.ac.uk/
              ~wbl/ftp/papers/WBL.bloat_wsc2.ps.gz.                      GPBiB
            W. B. Langdon and R. Poli. Why ants are hard. In J. R. Koza, et al., editors, Genetic
              Programming 1998: Proceedings of the Third Annual Conference, pages 193–201, Uni-
              versity of Wisconsin, Madison, Wisconsin, USA, 22-25 July 1998a. Morgan Kaufmann.
              ISBN 1-55860-548-7. URL http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/
              WBL.antspace_gp98.pdf.                                     GPBiB
            W. B. Langdon and R. Poli. Better trained ants for genetic programming. Technical
              Report CSRP-98-12, University of Birmingham, School of Computer Science, April
              1998b. URL ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1998/CSRP-98-12.ps.gz.
              GPBiB
            W. B. Langdon and R. Poli. The halting probability in von Neumann architectures.
              In P. Collet, et al., editors, Proceedings of the 9th European Conference on Genetic
              Programming, volume 3905 of Lecture Notes in Computer Science, pages 225–237,
              Budapest, Hungary, 10 - 12 April 2006. Springer. ISBN 3-540-33143-3. URL http:
              //www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/wbl_egp2006.pdf.  GPBiB
            W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer-Verlag,
              2002. ISBN 3-540-42451-2. URL http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/.
              GPBiB
            W. B. Langdon and P. C. Treleaven. Scheduling maintenance of electrical power trans-
              mission networks using genetic programming. In K. Warwick, et al., editors, Ar-
              tificial Intelligence Techniques in Power Systems, chapter 10, pages 220–237. IEE,
              1997. ISBN 0-85296-897-3. URL http://www.iee.org/Publish/Books/Power/Po022c.
              cfm#10.Scheduling.                                         GPBiB

            W. B. Langdon, R. Poli, P. Nordin, and T. Fogarty, editors.  Late-Breaking Papers
              of EuroGP-99, Goteborg, Sweden, 26-27 May 1999. URL ftp://ftp.cwi.nl/pub/
              CWIreports/SEN/SEN-R9913.pdf.                              GPBiB
            W. B. Langdon, E. Cant´u-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
              V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller,
              E. Burke, and N. Jonoska, editors. GECCO 2002: Proceedings of the Genetic and
              Evolutionary Computation Conference, New York, 9-13 July 2002. Morgan Kaufmann
              Publishers. ISBN 1-55860-878-8. URL http://www.isgec.org/GECCO-2002.  GPBiB

            W. B. Langdon. A bibliography for genetic programming. In P. J. Angeline and K. E.
              Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter B, pages 507–532.
              MIT Press, Cambridge, MA, USA, 1996. ISBN 0-262-01158-1. URL http://www.cs.
              ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL.aigp2.appx.ps.gz.  GPBiB

            W. B. Langdon. Genetic Programming and Data Structures. Kluwer, Boston, 1998. ISBN
              0-7923-8135-1. URL http://www.cs.ucl.ac.uk/staff/W.Langdon/gpdata.  GPBiB
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=17)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 17  Average Size   50  Fitness     0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   204   205   206   207   208   209   210   211   212   213   214