Page 211 - 49A Field Guide to Genetic Programming
P. 211

BIBLIOGRAPHY                                                  197


            T. L. Lew, A. B. Spencer, F. Scarpa, K. Worden, A. Rutherford, and F. Hemez. Iden-
              tification of response surface models using genetic programming. Mechanical Systems
              and Signal Processing, 20(8):1819–1831, November 2006.     GPBiB
            D. R. Lewin, S. Lachman-Shalem, and B. Grosman. The role of process system engineering
              (PSE) in integrated circuit (IC) manufacturing. Control Engineering Practice, 15(7):
              793–802, July 2006. Special Issue on Award Winning Applications, 2005 IFAC World
              Congress.                                                  GPBiB
            J. Li and E. P. K. Tsang. Investment decision making using FGP: A case study. In P. J.
              Angeline, et al., editors, Proceedings of the Congress on Evolutionary Computation,
              volume 2, pages 1253–1259, Mayflower Hotel, Washington D.C., USA, 6-9 July 1999.
              IEEE Press. ISBN 0-7803-5536-9 (softbound). URL http://www.cs.bham.ac.uk/~jxl/
              cercialink/web/publication/CEC99.pdf.                      GPBiB
            L. Li, W. Jiang, X. Li, K. L. Moser, Z. Guo, L. Du, Q. Wang, E. J. Topol, Q. Wang,
              and S. Rao. A robust hybrid between genetic algorithm and support vector machine
              for extracting an optimal feature gene subset. Genomics, 85(1):16–23, January 2005.
              GPBiB
            R. Linden and A. Bhaya. Evolving fuzzy rules to model gene expression. Biosystems, 88
              (1-2):76–91, March 2007.                                   GPBiB
            A. Lindenmayer. Mathematic models for cellular interaction in development, parts I and
              II. Journal of Theoretical Biology, 18:280–299 and 300–315, 1968.

            H. Lipson. How to draw a straight line using a GP: Benchmarking evolutionary design
              against 19th century kinematic synthesis. In M. Keijzer, editor, Late Breaking Papers
              at the 2004 Genetic and Evolutionary Computation Conference, Seattle, Washing-
              ton, USA, 26 July 2004. URL http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/
              LBP063.pdf.                                                GPBiB
            J. Lohn, G. Hornby, and D. Linden. Evolutionary antenna design for a NASA spacecraft.
              In U.-M. O’Reilly, et al., editors, Genetic Programming Theory and Practice II, chap-
              ter 18, pages 301–315. Springer, Ann Arbor, 13-15 May 2004. ISBN 0-387-23253-2.
              GPBiB
            J. Lohn, A. Stoica, and D. Keymeulen, editors. The Second NASA/DoD Workshop on
              Evolvable Hardware, Palo Alto, California, 13-15 July 2000. IEEE Computer Society.
              ISBN 0-7695-0762-X.

            M. A. Lones. Enzyme Genetic Programming: Modelling Biological Evolvability in Genetic
              Programming. PhD thesis, The University of York, Heslington, York, YO10 5DD, UK,
              September 2003. URL http://www-users.york.ac.uk/~mal503/common/thesis/main.
              html.                                                      GPBiB
            M. Looks. Scalable estimation-of-distribution program evolution. In H. Lipson, editor,
              GECCO, pages 539–546. ACM, 2007. ISBN 978-1-59593-697-4.
            M. Looks, B. Goertzel, and C. Pennachin. Learning computer programs with the bayesian
              optimization algorithm. In H.-G. Beyer, et al., editors, GECCO 2005: Proceedings of
              the 2005 conference on Genetic and evolutionary computation, volume 1, pages 747–
              748, Washington DC, USA, 25-29 June 2005. ACM Press. ISBN 1-59593-010-8. URL
              http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005/docs/p747.pdf.  GPBiB

            J. Louchet. Using an individual evolution strategy for stereovision. Genetic Programming
              and Evolvable Machines, 2(2):101–109, June 2001. ISSN 1389-2576.  GPBiB
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=19)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 19  Average Size   50  Fitness     0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   206   207   208   209   210   211   212   213   214   215   216