Page 217 - 49A Field Guide to Genetic Programming
P. 217
BIBLIOGRAPHY 203
P. Nordin, W. Banzhaf, and F. D. Francone. Efficient evolution of machine code for
CISC architectures using instruction blocks and homologous crossover. In L. Spector,
et al., editors, Advances in Genetic Programming 3, chapter 12, pages 275–299. MIT
Press, Cambridge, MA, USA, June 1999. ISBN 0-262-19423-6. URL http://www.
aimlearning.com/aigp31.pdf. GPBiB
P. Nordin and W. Johanna. Humanoider: Sjavlarande robotar och artificiell intelligens.
Liber, 2003. GPBiB
nVidia. NVIDIA CUDA Compute Unified Device Architecture, programming guide. Tech-
nical Report version 0.8, NVIDIA, 12 Feb 2007.
H. Oakley. Two scientific applications of genetic programming: Stack filters and non-
linear equation fitting to chaotic data. In K. E. Kinnear, Jr., editor, Advances in
Genetic Programming, chapter 17, pages 369–389. MIT Press, 1994. URL http://
cognet.mit.edu/library/books/view?isbn=0262111888. GPBiB
J. R. Olsson. Inductive functional programming using incremental program transforma-
tion and Execution of logic programs by iterative-deepening A* SLD-tree search. Dr
scient thesis, University of Oslo, Norway, 1994.
J. R. Olsson. How to invent functions. In R. Poli, et al., editors, Genetic Programming,
Proceedings of EuroGP’99, volume 1598 of LNCS, pages 232–243, Goteborg, Sweden,
26-27 May 1999. Springer-Verlag. ISBN 3-540-65899-8. URL http://www.ia-stud.
hiof.no/~rolando/abstrart1.ps. GPBiB
R. R. Olsson. Inductive functional programming using incremental
program transformation. Artificial Intelligence, 74(1):55–81, March
1995. URL http://www.sciencedirect.com/science?_ob=MImg&_imagekey=
B6TYF-4002FJH-9-1&_cdi=5617&_orig=browse&_coverDate=03%2F31%2F1995&_
sk=999259998&wchp=dGLbVlb-lSzBV&_acct=C000010182&_version=1&_userid=
125795&md5=ba5db57b3fa83d990440da8dfd8afcd7&ie=f.pdf. GPBiB
M. Oltean. Evolving evolutionary algorithms using linear genetic programming. Evolu-
tionary Computation, 13(3):387–410, Fall 2005. ISSN 1063-6560. GPBiB
M. Oltean and D. Dumitrescu. Evolving TSP heuristics using multi expression program-
ming. In M. Bubak, et al., editors, Computational Science - ICCS 2004: 4th In-
ternational Conference, Part II, volume 3037 of Lecture Notes in Computer Science,
pages 670–673, Krakow, Poland, 6-9 June 2004. Springer-Verlag. ISBN 3-540-22115-
8. URL http://springerlink.metapress.com/openurl.asp?genre=article&issn=
0302-9743&volume=3037&spage=670. GPBiB
R. Ondas, M. Pelikan, and K. Sastry. Genetic programming, probabilistic incremen-
tal program evolution, and scalability. In J. Knowles, editor, WSC10: 10th Online
World Conference on Soft Computing in Industrial Applications, pages 363–372, On
the World Wide Web, 19 September - 7 October 2005. ISBN 3-540-29123-7. URL
http://isxp1010c.sims.cranfield.ac.uk/Papers/paper122.pdf. GPBiB
M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary Automatic Programming
in a Arbitrary Language, volume 4 of Genetic programming. Kluwer Academic Pub-
lishers, 2003. ISBN 1-4020-7444-1. URL http://www.wkap.nl/prod/b/1-4020-7444-1.
GPBiB
M. O’Neill, C. Ryan, M. Keijzer, and M. Cattolico. Crossover in grammatical evolution.
Genetic Programming and Evolvable Machines, 4(1):67–93, March 2003. ISSN 1389-
2576. GPBiB
100 1000 2
Avg Size Avg Fitness sin(x)
Best Fitness GP (gen=25)
90
1.5
80
1
70
100
0.5
60
Generation 25 Average Size 50 Fitness 0
40 -0.5
10
30
(see Sec. B.4) 20 -1
-1.5
10
1 -2
0 20 40 60 80 100 0 20 40 60 80 100 0 1 2 3 4 5 6
Generations Generations x