Page 217 - 49A Field Guide to Genetic Programming
P. 217

BIBLIOGRAPHY                                                  203


            P. Nordin, W. Banzhaf, and F. D. Francone. Efficient evolution of machine code for
              CISC architectures using instruction blocks and homologous crossover. In L. Spector,
              et al., editors, Advances in Genetic Programming 3, chapter 12, pages 275–299. MIT
              Press, Cambridge, MA, USA, June 1999. ISBN 0-262-19423-6. URL http://www.
              aimlearning.com/aigp31.pdf.                                GPBiB
            P. Nordin and W. Johanna. Humanoider: Sjavlarande robotar och artificiell intelligens.
              Liber, 2003.                                               GPBiB
            nVidia. NVIDIA CUDA Compute Unified Device Architecture, programming guide. Tech-
              nical Report version 0.8, NVIDIA, 12 Feb 2007.

            H. Oakley. Two scientific applications of genetic programming: Stack filters and non-
              linear equation fitting to chaotic data. In K. E. Kinnear, Jr., editor, Advances in
              Genetic Programming, chapter 17, pages 369–389. MIT Press, 1994. URL http://
              cognet.mit.edu/library/books/view?isbn=0262111888.         GPBiB
            J. R. Olsson. Inductive functional programming using incremental program transforma-
              tion and Execution of logic programs by iterative-deepening A* SLD-tree search. Dr
              scient thesis, University of Oslo, Norway, 1994.
            J. R. Olsson. How to invent functions. In R. Poli, et al., editors, Genetic Programming,
              Proceedings of EuroGP’99, volume 1598 of LNCS, pages 232–243, Goteborg, Sweden,
              26-27 May 1999. Springer-Verlag. ISBN 3-540-65899-8. URL http://www.ia-stud.
              hiof.no/~rolando/abstrart1.ps.                             GPBiB
            R.  R.  Olsson.    Inductive  functional  programming  using  incremental
              program  transformation.  Artificial  Intelligence,  74(1):55–81,  March
              1995.     URL   http://www.sciencedirect.com/science?_ob=MImg&_imagekey=
              B6TYF-4002FJH-9-1&_cdi=5617&_orig=browse&_coverDate=03%2F31%2F1995&_
              sk=999259998&wchp=dGLbVlb-lSzBV&_acct=C000010182&_version=1&_userid=
              125795&md5=ba5db57b3fa83d990440da8dfd8afcd7&ie=f.pdf.      GPBiB

            M. Oltean. Evolving evolutionary algorithms using linear genetic programming. Evolu-
              tionary Computation, 13(3):387–410, Fall 2005. ISSN 1063-6560.  GPBiB
            M. Oltean and D. Dumitrescu. Evolving TSP heuristics using multi expression program-
              ming. In M. Bubak, et al., editors, Computational Science - ICCS 2004: 4th In-
              ternational Conference, Part II, volume 3037 of Lecture Notes in Computer Science,
              pages 670–673, Krakow, Poland, 6-9 June 2004. Springer-Verlag. ISBN 3-540-22115-
              8.  URL http://springerlink.metapress.com/openurl.asp?genre=article&issn=
              0302-9743&volume=3037&spage=670.                           GPBiB
            R. Ondas, M. Pelikan, and K. Sastry. Genetic programming, probabilistic incremen-
              tal program evolution, and scalability. In J. Knowles, editor, WSC10: 10th Online
              World Conference on Soft Computing in Industrial Applications, pages 363–372, On
              the World Wide Web, 19 September - 7 October 2005. ISBN 3-540-29123-7. URL
              http://isxp1010c.sims.cranfield.ac.uk/Papers/paper122.pdf.  GPBiB
            M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary Automatic Programming
              in a Arbitrary Language, volume 4 of Genetic programming. Kluwer Academic Pub-
              lishers, 2003. ISBN 1-4020-7444-1. URL http://www.wkap.nl/prod/b/1-4020-7444-1.
              GPBiB
            M. O’Neill, C. Ryan, M. Keijzer, and M. Cattolico. Crossover in grammatical evolution.
              Genetic Programming and Evolvable Machines, 4(1):67–93, March 2003. ISSN 1389-
              2576.                                                      GPBiB
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=25)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 25  Average Size   50  Fitness     0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   212   213   214   215   216   217   218   219   220   221   222