Page 221 - 49A Field Guide to Genetic Programming
P. 221

BIBLIOGRAPHY                                                  207


            R. Poli and W. B. Langdon. Running genetic programming backward. In R. L. Riolo,
              et al., editors, Genetic Programming Theory and Practice. Kluwer, 2005a.
            R. Poli and W. B. Langdon. Running genetic programming backward. In T. Yu, et al.,
              editors, Genetic Programming Theory and Practice III, volume 9 of Genetic Pro-
              gramming, chapter 9, pages 125–140. Springer, Ann Arbor, 12-14 May 2005b. ISBN
              0-387-28110-X. URL http://www.cs.essex.ac.uk/staff/poli/papers/GPTP2005.pdf.
              GPBiB
            R. Poli and W. B. Langdon. Backward-chaining evolutionary algorithms. Artificial In-
              telligence, 170(11):953–982, August 2006a. URL http://www.cs.essex.ac.uk/staff/
              poli/papers/aijournal2006.pdf.                             GPBiB

            R. Poli and W. B. Langdon. Efficient markov chain model of machine code program
              execution and halting. In R. L. Riolo, et al., editors, Genetic Programming Theory
              and Practice IV, volume 5 of Genetic and Evolutionary Computation, chapter 13.
              Springer, Ann Arbor, 11-13 May 2006b. ISBN 0-387-33375-4. URL http://www.cs.
              essex.ac.uk/staff/poli/papers/GPTP2006.pdf.                GPBiB

            R. Poli, W. B. Langdon, and S. Dignum. On the limiting distribution of program sizes
              in tree-based genetic programming. In M. Ebner, et al., editors, Proceedings of the
              10th European Conference on Genetic Programming, volume 4445 of Lecture Notes in
              Computer Science, pages 193–204, Valencia, Spain, 11 - 13 April 2007. Springer. ISBN
              3-540-71602-5.                                             GPBiB
            R. Poli, W. B. Langdon, and O. Holland. Extending particle swarm optimisation via ge-
              netic programming. In M. Keijzer, et al., editors, Proceedings of the 8th European Con-
              ference on Genetic Programming, volume 3447 of Lecture Notes in Computer Science,
              pages 291–300, Lausanne, Switzerland, 30 March - 1 April 2005. Springer. ISBN 3-540-
              25436-6. URL http://www.cs.essex.ac.uk/staff/poli/papers/eurogpPSO2005.pdf.
              GPBiB
            R.  Poli,  W.  B.  Langdon,  and  N.  F.  McPhee.  A  field  guide  to  ge-
              netic programming.  Published via http://lulu.com and freely available at
              http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza). GPBiB
            R. Poli and N. F. McPhee. A linear estimation-of-distribution GP system. In Proceedings
              of EuroGP 2008, 2008a.                                     GPBiB
            R. Poli and N. F. McPhee. Covariant parsimony pressure in genetic programming. Tech-
              nical Report CES-480, Department of Computing and Electronic Systems, University
              of Essex, January 2008b.
            R. Poli and N. F. McPhee. Exact schema theorems for GP with one-point and stan-
              dard crossover operating on linear structures and their application to the study of
              the evolution of size. In J. F. Miller, et al., editors, Genetic Programming, Proceed-
              ings of EuroGP’2001, volume 2038 of LNCS, pages 126–142, Lake Como, Italy, 18-20
              April 2001. Springer-Verlag. ISBN 3-540-41899-7. URL http://www.springerlink.
              com/openurl.asp?genre=article&issn=0302-9743&volume=2038&spage=126.  GPBiB
            R. Poli and N. F. McPhee. General schema theory for genetic programming with subtree-
              swapping crossover: Part I. Evolutionary Computation, 11(1):53–66, March 2003a.
              URL http://cswww.essex.ac.uk/staff/rpoli/papers/ecj2003partI.pdf.  GPBiB

            R. Poli and N. F. McPhee. General schema theory for genetic programming with subtree-
              swapping crossover: Part II. Evolutionary Computation, 11(2):169–206, June 2003b.
              URL http://cswww.essex.ac.uk/staff/rpoli/papers/ecj2003partII.pdf.  GPBiB
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=29)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 29  Average Size   50  Fitness     0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   216   217   218   219   220   221   222   223   224   225   226