Page 3 - 35Linear Algebra
P. 3

Contents












                   1 What is Linear Algebra?                                                   9
                      1.1   Organizing Information . . . . . . . . . . . . . . . . . . . . . .  9
                      1.2   What are Vectors? . . . . . . . . . . . . . . . . . . . . . . . . 12
                      1.3   What are Linear Functions? . . . . . . . . . . . . . . . . . . . 15
                      1.4   So, What is a Matrix? . . . . . . . . . . . . . . . . . . . . . . 20
                            1.4.1  Matrix Multiplication is Composition of Functions . . . 25
                            1.4.2  The Matrix Detour . . . . . . . . . . . . . . . . . . . . 26
                      1.5   Review Problems . . . . . . . . . . . . . . . . . . . . . . . . . 30


                   2 Systems of Linear Equations                                              37
                      2.1   Gaussian Elimination . . . . . . . . . . . . . . . . . . . . . . . 37
                            2.1.1  Augmented Matrix Notation . . . . . . . . . . . . . . . 37
                            2.1.2  Equivalence and the Act of Solving . . . . . . . . . . . 40
                            2.1.3  Reduced Row Echelon Form . . . . . . . . . . . . . . . 40
                            2.1.4  Solution Sets and RREF . . . . . . . . . . . . . . . . . 45
                      2.2   Review Problems . . . . . . . . . . . . . . . . . . . . . . . . . 48
                      2.3   Elementary Row Operations . . . . . . . . . . . . . . . . . . . 52
                            2.3.1  EROs and Matrices . . . . . . . . . . . . . . . . . . . . 52
                            2.3.2  Recording EROs in (M|I ) . . . . . . . . . . . . . . . . 54
                            2.3.3  The Three Elementary Matrices . . . . . . . . . . . . . 56
                            2.3.4  LU, LDU, and PLDU Factorizations . . . . . . . . . . 58
                      2.4   Review Problems . . . . . . . . . . . . . . . . . . . . . . . . . 61


                                                                    3
   1   2   3   4   5   6   7   8