Page 10 - 81Sulfonation-Sulfation Processing Technology for Anionic Surfactant Manufacture_opt
P. 10

Sulfonation/Sulfation Processing Technology for Anionic Surfactant Manufacture   277

                                  C SO            C SO        d
                              v z   3     (D SO    D T  )  3      r    δ ≤ y ≤       (1)
                                   z   y     3     y          2

                                    C             C 
                                v    A    (D   D  )  A    r     0 ≤ y ≤ δ        (2)
                                 z          A   T    
                                    z   y        y   
            As discussed by Knaggs, (2004), even if the liquid film is turbulent and does wavy flow then
            turbulent diffusivity cannot be neglected, this and turbulent viscosity in the liquid phase can
            be taken of work suggested by Yih & Liu (1983).
                                                                         0,5
                                                                0,5  2  
                        D                   2          y    ( /  )      
                         T      0,5 0,5 1 0,64(y  )     1 exp    w      f   (3)
                                
                                       
                         T                     w         A           
                                                                      
                                                     3     
                                                      y  
                                         w    1     L                           (4)
                                                 G     L           
                                                         
            Turbulent  Schmidt  number is  evaluated  from  the Cebeci’s  modification  of the van Driest
            model and is further modified as:
                                            
                                       v T  1 exp( y     ( /  w ) 0,5  / A  )
                                  Sc                                              (5)
                                    T                    0,5  
                                            
                                       D   1 exp( y    ( /  )  /B  )
                                        T               w
                                               5          i 1
                                        
                                      B   Sc   0,5  C  i    10  log Sc         (6)
                                               i 1
            with A +  = 25,1; C 1 = 34,96; C 2 = 28,97; C 3 = 13,95; C 4 = 6,33 and C 5 = –1,186. For non–volatile
            liquids such as methyl stearate, the vapor pressure is zero at working temperatures. At the
            interface, it  is  assumed  that  Henry  and  Raoult’s  laws  are  applicable  to  determine the SO 3
            solubility. The Henry constant m, is determined from the SO 3 vapor pressure:
                                       N  G    k   C  G    mC  i                 (7)
                                         SO 3  G  SO 3  SO 3  
                              k         0,704
                               G    0,8Sc       (McCready & Hanratty, 1984)        (8)
                               u
            where the turbulent velocity is defined as:
                                                    0,5
                                                   
                                             u    G                              (9)
                                                   G 

            4.2 Momentum balance
            Axial liquid  velocity  v z, can be found  from  the momentum  equation after neglecting  the
            pressure  gradient  and  axial terms  (Figure 9). The  flow profile of the liquid  falling  is





             www.intechopen.com
   5   6   7   8   9   10   11   12   13   14   15