Page 203 - 49A Field Guide to Genetic Programming
P. 203
BIBLIOGRAPHY 189
D. B. Kell. Metabolomics and machine learning: Explanatory analysis of complex
metabolome data using genetic programming to produce simple, robust rules. Molec-
ular Biology Reports, 29(1-2):237–241, 2002b. URL http://dbkgroup.org/Papers/
btk2002_dbk.pdf. GPBiB
D. B. Kell. Genotype-phenotype mapping: genes as computer programs. Trends in Ge-
netics, 18(11):555–559, November 2002c. URL http://dbkgroup.org/Papers/trends_
genet_18_(555).pdf. GPBiB
D. B. Kell, R. M. Darby, and J. Draper. Genomic computing. explanatory analysis of
plant expression profiling data using machine learning. Plant Physiology, 126(3):943–
951, July 2001. URL http://www.plantphysiol.org/cgi/content/full/126/3/943.
GPBiB
R. E. Keller and R. Poli. Linear genetic programming of metaheuristics. In D. Thierens,
et al., editors, GECCO ’07: Proceedings of the 9th annual conference on Genetic
and evolutionary computation, volume 2, pages 1753–1753, London, 7-11 July 2007a.
ACM Press. URL http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1753.
pdf. GPBiB
R. E. Keller and R. Poli. Cost-benefit investigation of a genetic-programming hyper-
heuristic. In Proceedings of Evolution Artificielle, October 2007b.
R. E. Keller and R. Poli. Linear genetic programming of parsimonious metaheuristics.
In Proceedings of IEEE Congress on Evolutionary Computation (CEC), September
2007c.
D. Keymeulen, A. Stoica, J. Lohn, and R. S. Zebulum, editors. The Third NASA/DoD
workshop on Evolvable Hardware, Long Beach, California, 12-14 July 2001. IEEE Com-
puter Society. ISBN 0-7695-1180-5. URL http://cism.jpl.nasa.gov/ehw/events/
nasaeh01/.
A. Khan. Intelligent Perceptual Shaping of a Digital Watermark. PhD thesis, Com-
puter Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences
and Technology, Topi, Pakistan, May 2006. URL http://www.cs.ucl.ac.uk/staff/W.
Langdon/ftp/papers/Intelligent_perceptual_shaping_WM_asif.pdf. GPBiB
A. Khan and A. M. Mirza. Genetic perceptual shaping: Utilizing cover image and con-
ceivable attack information during watermark embedding. Information Fusion, 8(4):
354–365, October 2007. ISSN 1566-2535. GPBiB
B. KHosraviani. Organization design optimization using genetic programming. In J. R.
Koza, editor, Genetic Algorithms and Genetic Programming at Stanford 2003, pages
109–117. Stanford Bookstore, Stanford, California, 94305-3079 USA, 4 December 2003.
URL http://www.genetic-programming.org/sp2003/KHosraviani.pdf. GPBiB
B. KHosraviani, R. E. Levitt, and J. R. Koza. Organization design optimization using
genetic programming. In M. Keijzer, editor, Late Breaking Papers at the 2004 Genetic
and Evolutionary Computation Conference, Seattle, Washington, USA, 26 July 2004.
URL http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/LBP056.pdf. GPBiB
R. H. Kibria and Y. Li. Optimizing the initialization of dynamic decision heuristics
in DPLL SAT solvers using genetic programming. In P. Collet, et al., editors, Pro-
ceedings of the 9th European Conference on Genetic Programming, volume 3905 of
Lecture Notes in Computer Science, pages 331–340, Budapest, Hungary, 10 - 12 April
2006. Springer. ISBN 3-540-33143-3. URL http://link.springer.de/link/service/
series/0558/papers/3905/39050331.pdf. GPBiB
100 1000 2
Avg Size Avg Fitness sin(x)
Best Fitness GP (gen=11)
90
1.5
80
1
70
100
0.5
60
Generation 11 Average Size 50 Fitness 0
40 -0.5
10
30
(see Sec. B.4) 20 -1
-1.5
10
1 -2
0 20 40 60 80 100 0 20 40 60 80 100 0 1 2 3 4 5 6
Generations Generations x