Page 203 - 49A Field Guide to Genetic Programming
P. 203

BIBLIOGRAPHY                                                  189


            D. B. Kell.  Metabolomics and machine learning: Explanatory analysis of complex
              metabolome data using genetic programming to produce simple, robust rules. Molec-
              ular Biology Reports, 29(1-2):237–241, 2002b. URL http://dbkgroup.org/Papers/
              btk2002_dbk.pdf.                                           GPBiB
            D. B. Kell. Genotype-phenotype mapping: genes as computer programs. Trends in Ge-
              netics, 18(11):555–559, November 2002c. URL http://dbkgroup.org/Papers/trends_
              genet_18_(555).pdf.                                        GPBiB
            D. B. Kell, R. M. Darby, and J. Draper. Genomic computing. explanatory analysis of
              plant expression profiling data using machine learning. Plant Physiology, 126(3):943–
              951, July 2001. URL http://www.plantphysiol.org/cgi/content/full/126/3/943.
              GPBiB
            R. E. Keller and R. Poli. Linear genetic programming of metaheuristics. In D. Thierens,
              et al., editors, GECCO ’07: Proceedings of the 9th annual conference on Genetic
              and evolutionary computation, volume 2, pages 1753–1753, London, 7-11 July 2007a.
              ACM Press. URL http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1753.
              pdf.                                                       GPBiB
            R. E. Keller and R. Poli. Cost-benefit investigation of a genetic-programming hyper-
              heuristic. In Proceedings of Evolution Artificielle, October 2007b.
            R. E. Keller and R. Poli. Linear genetic programming of parsimonious metaheuristics.
              In Proceedings of IEEE Congress on Evolutionary Computation (CEC), September
              2007c.

            D. Keymeulen, A. Stoica, J. Lohn, and R. S. Zebulum, editors. The Third NASA/DoD
              workshop on Evolvable Hardware, Long Beach, California, 12-14 July 2001. IEEE Com-
              puter Society. ISBN 0-7695-1180-5. URL http://cism.jpl.nasa.gov/ehw/events/
              nasaeh01/.
            A. Khan. Intelligent Perceptual Shaping of a Digital Watermark. PhD thesis, Com-
              puter Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences
              and Technology, Topi, Pakistan, May 2006. URL http://www.cs.ucl.ac.uk/staff/W.
              Langdon/ftp/papers/Intelligent_perceptual_shaping_WM_asif.pdf.  GPBiB
            A. Khan and A. M. Mirza. Genetic perceptual shaping: Utilizing cover image and con-
              ceivable attack information during watermark embedding. Information Fusion, 8(4):
              354–365, October 2007. ISSN 1566-2535.                     GPBiB
            B. KHosraviani. Organization design optimization using genetic programming. In J. R.
              Koza, editor, Genetic Algorithms and Genetic Programming at Stanford 2003, pages
              109–117. Stanford Bookstore, Stanford, California, 94305-3079 USA, 4 December 2003.
              URL http://www.genetic-programming.org/sp2003/KHosraviani.pdf.  GPBiB
            B. KHosraviani, R. E. Levitt, and J. R. Koza. Organization design optimization using
              genetic programming. In M. Keijzer, editor, Late Breaking Papers at the 2004 Genetic
              and Evolutionary Computation Conference, Seattle, Washington, USA, 26 July 2004.
              URL http://www.cs.bham.ac.uk/~wbl/biblio/gecco2004/LBP056.pdf.  GPBiB
            R. H. Kibria and Y. Li. Optimizing the initialization of dynamic decision heuristics
              in DPLL SAT solvers using genetic programming. In P. Collet, et al., editors, Pro-
              ceedings of the 9th European Conference on Genetic Programming, volume 3905 of
              Lecture Notes in Computer Science, pages 331–340, Budapest, Hungary, 10 - 12 April
              2006. Springer. ISBN 3-540-33143-3. URL http://link.springer.de/link/service/
              series/0558/papers/3905/39050331.pdf.                      GPBiB
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=11)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 11  Average Size   50  Fitness     0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   198   199   200   201   202   203   204   205   206   207   208