Page 201 - 49A Field Guide to Genetic Programming
P. 201

BIBLIOGRAPHY                                                  187


            H. Iba, T. Sato, and H. de Garis. Recombination guidance for numerical genetic pro-
              gramming. In 1995 IEEE Conference on Evolutionary Computation, volume 1, pages
              97–102, Perth, Australia, 29 November - 1 December 1995b. IEEE Press.  GPBiB
            Y. Inagaki.  On synchronized evolution of the network of automata.  IEEE Trans-
              actions on Evolutionary Computation, 6(2):147–158, April 2002. ISSN 1089-778X.
              URL http://ieeexplore.ieee.org/iel5/4235/21497/00996014.pdf?tp=&arnumber=
              996014&isnumber=21497&arSt=147&ared=158&arAuthor=Inagaki%2C+Y.%3B.  GPBiB
            C. Jacob. Principia Evolvica – Simulierte Evolution mit Mathematica. dpunkt.verlag,
              Heidelberg, Germany, August 1997. ISBN 3-920993-48-9.      GPBiB
            C. Jacob. The art of genetic programming. IEEE Intelligent Systems, 15(3):83–84, May-
              June 2000. ISSN 1094-7167. URL http://ieeexplore.ieee.org/iel5/5254/18363/
              00846288.pdf.                                              GPBiB
            C. Jacob. Illustrating Evolutionary Computation with Mathematica. Morgan Kaufmann,
              2001. ISBN 1-55860-637-8. URL http://www.mkp.com/books_catalog/catalog.asp?
              ISBN=1-55860-637-8.                                        GPBiB
            N. Jin. Equilibrium selection by co-evolution for bargaining problems under incomplete
              information about time preferences. In Proceedings of the IEEE Congress on Evolu-
              tionary Computation (CEC), pages 2661–2668, Edinburgh, 2–5 September 2005.
            N. Jin and E. P. K. Tsang. Co-adaptive strategies for sequential bargaining problems with
              discount factors and outside options. In Proceedings of the 2006 IEEE Congress on
              Evolutionary Computation, pages 7913–7920, Vancouver, 6-21 July 2006. IEEE Press.
              ISBN 0-7803-9487-9.                                        GPBiB

            H. E. Johnson, R. J. Gilbert, M. K. Winson, R. Goodacre, A. R. Smith, J. J. Rowland,
              M. A. Hall, and D. B. Kell. Explanatory analysis of the metabolome using genetic
              programming of simple, interpretable rules. Genetic Programming and Evolvable Ma-
              chines, 1(3):243–258, July 2000. ISSN 1389-2576.           GPBiB
            A. Jones, D. Young, J. Taylor, D. B. Kell, and J. J. Rowland. Quantification of microbial
              productivity via multi-angle light scattering and supervised learning. Biotechnology
              and Bioengineering, 59(2):131–143, 20 July 1998. ISSN 0006-3592.  GPBiB
            Jong-Wan Kim.  Proceedings of the 2001 Congress on Evolutionary Computation
              CEC2001, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Ko-
              rea, 27-30 May 2001. IEEE Press. ISBN 0-7803-6658-1.       GPBiB

            E. Jordaan, J. den Doelder, and G. Smits. Novel approach to develop structure-property
              relationships using genetic programming. In T. P. Runarsson, et al., editors, Paral-
              lel Problem Solving from Nature - PPSN IX, volume 4193 of LNCS, pages 322–331,
              Reykjavik, Iceland, 9-13 September 2006. Springer-Verlag. ISBN 3-540-38990-3. GPBiB
            E. Jordaan, A. Kordon, L. Chiang, and G. Smits. Robust inferential sensors based on
              ensemble of predictors generated by genetic programming. In X. Yao, et al., editors,
              Parallel Problem Solving from Nature - PPSN VIII, volume 3242 of LNCS, pages
              522–531, Birmingham, UK, 18-22 September 2004. Springer-Verlag.  ISBN 3-540-
              23092-0.  URL http://www.springerlink.com/openurl.asp?genre=article&issn=
              0302-9743&volume=3242&spage=522.                           GPBiB

            A. K. Joshi and Y. Schabes. Tree adjoining grammars. In G. Rozenber and A. Saloma,
              editors, Handbook of of Formal Languages, pages 69–123. Springer-Verlag, 1997.
                                    100             1000            2
                                              Avg Size       Avg Fitness      sin(x)
                                                             Best Fitness    GP (gen=9)
                                    90
                                                                    1.5
                                    80
                                                                    1
                                    70
                                                    100
                                                                    0.5
                                    60
                      Generation 9  Average Size   50  Fitness      0
                                    40                             -0.5
                                                     10
                                    30
                      (see Sec. B.4)   20                          -1
                                                                   -1.5
                                    10
                                                     1             -2
                                     0   20   40   60   80   100   0   20   40   60   80   100   0   1   2   3   4   5   6
                                         Generations     Generations      x
   196   197   198   199   200   201   202   203   204   205   206