Page 202 - 35Linear Algebra
P. 202

202                                                               Subspaces and Spanning Sets


                            9.3     Review Problems

                                          Reading Problems     1    , 2
                            Webwork:          Subspaces         3, 4, 5, 6
                                                Spans              7, 8

                                                                2
                                                                                3
                                                     3
                                                                         2
                               1. Determine if x − x ∈ span{x , 2x + x , x + x }.
                               2. Let U and W be subspaces of V . Are:
                                   (a) U ∪ W

                                  (b) U ∩ W

                                                                                                  3
                                  also subspaces? Explain why or why not. Draw examples in R .


                                                                   Hint



                                           3
                                                 3
                               3. Let L : R → R where
                                                  L(x, y, z) = (x + 2y + z, 2x + y + z, 0) .

                                                                         3
                                                                               3
                                  Find kerL, imL and the eigenspaces R , R . Your answers should be
                                                                               3
                                                                         −1
                                              3
                                  subsets of R . Express them using span notation.
























                                                      202
   197   198   199   200   201   202   203   204   205   206   207