Page 190 - 35Linear Algebra
P. 190

190                                                                                 Determinants


                            8.4.1    Determinant of the Inverse

                            Let M and N be n × n matrices. We previously showed that


                                              det(MN) = det M det N, and det I = 1.
                            Then 1 = det I = det(MM    −1 ) = det M det M −1 . As such we have:

                            Theorem 8.4.1.
                                                                        1
                                                         det M  −1  =
                                                                     det M

















                            8.4.2    Adjoint of a Matrix

                            Recall that for a 2 × 2 matrix


                                                   d −b      a b            a b
                                                                    = det          I .
                                                  −c    a     c d           c d
                            Or in a more careful notation: if

                                                                 m    m
                                                                  1    1
                                                         M =       1    2  ,
                                                                 m 2 1  m 2 2
                            then
                                                                           2      1
                                                             1            m    −m
                                              M  −1  =                      2 2    2 1  ,
                                                         1
                                                                  1
                                                            2
                                                       m m − m m     2  −m       m
                                                         1  2     2  1      1      1
                                                                                          2     1
                                                                                         m    −m
                                                      2
                                                                2
                                                   1
                                                             1
                            so long as det M = m m − m m 6= 0. The matrix                  2     2   that
                                                   1
                                                                1
                                                             2
                                                      2
                                                                                       −m  2 1  m 1
                                                                                                 1
                            appears above is a special matrix, called the adjoint of M. Let’s define the
                            adjoint for an n × n matrix.
                                                                                   i
                               The cofactor of M corresponding to the entry m of M is the product
                                                                                   j
                                                                                                    i
                                                         i
                            of the minor associated to m and (−1)   i+j . This is written cofactor(m ).
                                                         j
                                                                                                    j
                                                      190
   185   186   187   188   189   190   191   192   193   194   195