Page 173 - 35Linear Algebra
P. 173

8.1 The Determinant Formula                                                                   173


                   This is very cumbersome.
                      Luckily, it is very easy to compute the determinants of certain matrices.
                                                                    i
                   For example, if M is diagonal, meaning that M = 0 whenever i 6= j, then
                                                                    j
                   all summands of the determinant involving off-diagonal entries vanish and
                                       X
                                                                                    n
                                                                             2
                                                                          1
                              det M =      sgn(σ)m 1 σ(1) m 2 σ(2)  · · · m n  = m m · · · m .
                                                                          1
                                                                             2
                                                                  σ(n)
                                                                                    n
                                        σ
                                     The determinant of a diagonal matrix is
                                        the product of its diagonal entries.
                   Since the identity matrix is diagonal with all diagonal entries equal to one,
                   we have
                                                     det I = 1.
                      We would like to use the determinant to decide whether a matrix is in-
                   vertible. Previously, we computed the inverse of a matrix by applying row
                   operations. Therefore we ask what happens to the determinant when row
                   operations are applied to a matrix.
                   Swapping rows Lets swap rows i and j of a matrix M and then compute its determi-
                   nant. For the permutation σ, let ˆσ be the permutation obtained by swapping positions
                   i and j. Clearly
                                                 sgn(ˆσ) = −sgn(σ) .
                         0
                   Let M be the matrix M with rows i and j swapped. Then (assuming i < j):
                              det M 0  =  X  sgn(σ) m 1  · · · m j  · · · m i  · · · m n
                                                      σ(1)    σ(i)    σ(j)     σ(n)
                                           σ
                                          X                            j
                                      =      sgn(σ) m 1  · · · m i  · · · m  · · · m n
                                                      σ(1)    σ(j)     σ(i)    σ(n)
                                           σ
                                          X                              j
                                      =      (−sgn(ˆσ)) m 1  · · · m i  · · · m  · · · m n
                                                         ˆ σ(1)  ˆ σ(i)   ˆ σ(j)  ˆ σ(n)
                                           σ
                                            X                            j
                                      = −      sgn(ˆσ) m 1  · · · m i  · · · m  · · · m n
                                                        ˆ σ(1)  ˆ σ(i)   ˆ σ(j)  ˆ σ(n)
                                             ˆ σ
                                      = − det M.
                                    P      P
                   The step replacing    by     often causes confusion; it holds since we sum over all
                                       σ      ˆ σ
                   permutations (see review problem 3). Thus we see that swapping rows changes the
                   sign of the determinant. I.e.,
                                                      0
                                                 det M = − det M .

                                                                  173
   168   169   170   171   172   173   174   175   176   177   178