Page 136 - 35Linear Algebra
P. 136

136                                                                                      Matrices


                               In other words, addition just adds corresponding entries in two matrices,
                                                                                            n
                                                                                                  n
                            and scalar multiplication multiplies every entry. Notice that M = R is just
                                                                                           1
                            the vector space of column vectors.
                               Recall that we can multiply an r × k matrix by a k × 1 column vector to
                            produce a r × 1 column vector using the rule
                                                                   k
                                                                  X
                                                                        i j
                                                         MV =        m v    .
                                                                        j
                                                                  j=1
                               This suggests the rule for multiplying an r × k matrix M by a k × s
                            matrix N: our k ×s matrix N consists of s column vectors side-by-side, each
                            of dimension k × 1. We can multiply our r × k matrix M by each of these s
                            column vectors using the rule we already know, obtaining s column vectors
                            each of dimension r × 1. If we place these s column vectors side-by-side, we
                            obtain an r × s matrix MN.
                               That is, let
                                                              1   1        1 
                                                             n 1  n 2  · · · n s
                                                            2    n 2  · · · n 2
                                                             n
                                                            1     2        s
                                                      N =  . .    . .      . . 
                                                            .     .        . 
                                                             n k  n k  · · · n k
                                                                   2
                                                                            s
                                                               1
                            and call the columns N 1 through N s :
                                                  1             1                  1  
                                                 n 1              n 2                 n s
                                                 n 2           n 2                n 2 
                                         N 1 =  .  , N 2 =  .  , . . . , N s =  .  .
                                                                                    
                                                               
                                               
                                                   1 
                                                                   2 
                                                                                        s 
                                                  .               .                    .
                                                .             .                  . 
                                                 n k 1            n k 2               n k s
                            Then
                                                                                              
                                                |    |         |          |       |           |
                                   MN = M     N 1 N 2 · · · N s    =   MN 1 MN 2 · · · MN s   
                                                |    |         |          |       |           |
                                                                                                    i
                                                      i
                               Concisely: If M = (m ) for i = 1, . . . , r; j = 1, . . . , k and N = (n ) for
                                                      j                                             j
                                                                                   i
                            i = 1, . . . , k; j = 1, . . . , s, then MN = L where L = (` ) for i = i, . . . , r; j =
                                                                                   j
                            1, . . . , s is given by
                                                                 k
                                                                X       p
                                                                      i
                                                            i
                                                           ` =      m n .
                                                            j         p j
                                                                p=1
                                                      136
   131   132   133   134   135   136   137   138   139   140   141