Page 139 - 35Linear Algebra
P. 139

7.3 Properties of Matrices                                                                    139


                      The r × r diagonal matrix with all diagonal entries equal to 1 is called
                   the identity matrix, I r , or just I. An identity matrix looks like

                                                                  
                                                    1 0 0 · · · 0
                                                   0 1 0 · · · 0  
                                                                  
                                                   0 0 1 · · · 0   .
                                                                   
                                             I = 
                                                 .    .  .  .    .
                                                  . .  . .  . .  . .  . . 
                                                    0 0 0 · · · 1
                   The identity matrix is special because


                                                 I r M = MI k = M

                   for all M of size r × k.

                                                                            i
                   Definition The transpose of an r ×k matrix M = (m ) is the k ×r matrix
                                                                            j
                                                      T
                                                              i
                                                    M = ( ˆm )
                                                              j
                                                    j
                                              i
                   with entries that satisfy ˆm = m .
                                              j
                                                    i
                                                            T
                      A matrix M is symmetric if M = M .
                   Example 86
                                                                 
                                                      T     2 1
                                               2 5 6
                                                          =   5 3   ,
                                               1 3 4
                                                              6 4
                   and
                                                             T

                                         2 5 6      2 5 6          65 43
                                                               =           ,
                                         1 3 4      1 3 4          43 26
                   is symmetric.

                                               Reading homework: problem 3


                   Observations

                      • Only square matrices can be symmetric.

                      • The transpose of a column vector is a row vector, and vice-versa.


                                                                  139
   134   135   136   137   138   139   140   141   142   143   144