Page 127 - 35Linear Algebra
P. 127

7.1 Linear Transformations and Matrices                                                       127


                                              n
                                       2
                                   1
                   The numbers (α , α , . . . , α ) are called the components of the vector v. Two
                   useful shorthand notations for this are
                                             1                        1  
                                            α                          α
                                            α 2                      α 2 
                                     v =  .  = (b 1 , b 2 , . . . , b n )  .  .
                                                                     
                                                                           
                                          
                                               
                                             .                          .
                                           .                        . 
                                            α n                        α n
                                                  B
                   7.1.2    From Linear Operators to Matrices
                   Chapter 6 showed that linear functions are very special kinds of functions;
                   they are fully specified by their values on any basis for their domain. A
                   matrix records how a linear operator maps an element of the basis to a sum
                   of multiples in the target space basis.
                      More carefully, if L is a linear operator from V to W then the matrix for L
                                                                       0
                   in the ordered bases B = (b 1 , b 2 , . . . ) for V and B = (β 1 , β 2 , . . . ) for W, is
                                           j
                   the array of numbers m specified by
                                           i
                                                   1
                                                                 j
                                         L(b i ) = m β + · · · + m β + · · ·
                                                     1
                                                                 i
                                                   i
                                                                   j
                   Remark To calculate the matrix of a linear transformation you must compute what
                   the linear transformation does to every input basis vector and then write the answers
                   in terms of the output basis vectors:

                    L(b 1 ), L(b 2 ), . . . , L(b j ), . . .
                                             1                 1                     1  
                                            m 1                  m 2                     m i
                                            m 2                m 2                   m 2 
                                             2                 2                     i 

                                           .                  .                     . 
                         = (β 1 , β 2 , . . . , β j , . . .)   .  , (β 1 , β 2 , . . . , β j , . . .)   .  , · · · , (β 1 , β 2 , . . . , β j , . . .)   .   , · · ·
                                                                                          .
                                             .
                                                                  .
                                                                                      
                                             j                 j                     j 
                                              1                   2                       i
                                           m                  m                     m 
                                             .                    .                       .
                                             .                    .                       .
                                             .                    .                       .
                                                1    1         1    
                                                m   m    · · · m   · · ·
                                                 1    2         i
                                                m   m    · · · m
                                                2    2         2  · · · 
                                                1    2         i    
                                               .     .        .     
                         = (β 1 , β 2 , . . . , β j , . . .)   . .  . .  . .  
                                                j    j         j    
                                                m   m    · · · m   · · ·
                                                                    
                                                1    2         i    
                                                 . . .  . . .  . . .
                                                  3
                   Example 79 Consider L : V → R (as in example 71) defined by
                                                                
                                            1       0          0      0
                                                                      1
                                            1
                                                               1
                                        L     =     ,  L     =     .
                                                    1
                                            0       0          1      0
                                                                  127
   122   123   124   125   126   127   128   129   130   131   132