Page 127 - 35Linear Algebra
P. 127
7.1 Linear Transformations and Matrices 127
n
2
1
The numbers (α , α , . . . , α ) are called the components of the vector v. Two
useful shorthand notations for this are
1 1
α α
α 2 α 2
v = . = (b 1 , b 2 , . . . , b n ) . .
. .
. .
α n α n
B
7.1.2 From Linear Operators to Matrices
Chapter 6 showed that linear functions are very special kinds of functions;
they are fully specified by their values on any basis for their domain. A
matrix records how a linear operator maps an element of the basis to a sum
of multiples in the target space basis.
More carefully, if L is a linear operator from V to W then the matrix for L
0
in the ordered bases B = (b 1 , b 2 , . . . ) for V and B = (β 1 , β 2 , . . . ) for W, is
j
the array of numbers m specified by
i
1
j
L(b i ) = m β + · · · + m β + · · ·
1
i
i
j
Remark To calculate the matrix of a linear transformation you must compute what
the linear transformation does to every input basis vector and then write the answers
in terms of the output basis vectors:
L(b 1 ), L(b 2 ), . . . , L(b j ), . . .
1 1 1
m 1 m 2 m i
m 2 m 2 m 2
2 2 i
. . .
= (β 1 , β 2 , . . . , β j , . . .) . , (β 1 , β 2 , . . . , β j , . . .) . , · · · , (β 1 , β 2 , . . . , β j , . . .) . , · · ·
.
.
.
j j j
1 2 i
m m m
. . .
. . .
. . .
1 1 1
m m · · · m · · ·
1 2 i
m m · · · m
2 2 2 · · ·
1 2 i
. . .
= (β 1 , β 2 , . . . , β j , . . .) . . . . . .
j j j
m m · · · m · · ·
1 2 i
. . . . . . . . .
3
Example 79 Consider L : V → R (as in example 71) defined by
1 0 0 0
1
1
1
L = , L = .
1
0 0 1 0
127