Page 10 - The Effects of Confinement inside Carbon Nanotubes on Catalysis
P. 10

Effects of Confinement inside CNTs on Catalysis Pan and Bao


          22 Chen, W.; Pan, X.; Bao, X. Tuning of redox properties of iron and iron oxides via  38 Tessonnier, J. P.; Pesant, L.; Ehret, G.; Ledoux, M. J.; Pham-Huu, C. Pd nanoparticles
            encapsulation within carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 7421–7426.  introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinna-
          23 Chen, W.; Fan, Z.; Pan, X.; Bao,X. Effect of confinementincarbon nanotubes on the activity  maldehyde into hydrocinnamaldehyde. Appl.Catal.A: Gen. 2005, 288, 203–210.
            of FischerTropsch iron catalyst. J. Am. Chem. Soc. 2008, 130,9414–9419.  39 Ma, H.;Wang, L.; Chen, L.; Dong, C.;Yu, W.; Huang, T.;Qian, Y.Pt nanoparticles deposited
          24 Pan, X.; Fan, Z.; Chen, W.; Ding, Y.; Luo, H.; Bao, X. Enhanced ethanol production inside  over carbon nanotubes for selective hydrogenation of cinnamaldehyde. Catal. Commun
            carbon-nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511.  2007, 8,452–456.
          25 Zhang, H.; Pan, X.; Liu, J.; Qian, W.; Wei, F.; Huang, Y.; Bao, X. Enhanced catalytic activity  40 Li, L. J.; Khlobystov, A. N.; Wiltshire, J. G.; Briggs, G. A. D.; Nicholas, R. J. Diameter-
            of subnanometer titania clusters confined inside double-wall carbon nanotubes. Chem-  selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat. Mater.
            SusChem 201110.1002/cssc.201000324.                   2005, 4,481–485.
          26 Chen, W.; Pan, X.; Willinger, M. G.; Su, D. S.; Bao, X. Facile autoreduction of iron oxide/  41 Shiozawa, H.; Pichler, T.; Gr€ uneis, A.; Pfeiffer, R.; Kuzmany, H.; Liu, Z.; Suenaga, K.;
            carbon nanotube encapsulates. J. Am. Chem. Soc. 2006, 128, 3136–3137.  Kataura, H. A catalytic reaction inside a single-walled carbon nanotube. Adv. Mater. 2008,
                                                                  20,1443–1449.
          27 Cao, F.; Zhong, K.; Gao, A.; Chen, C.; Li, Q.; Chen, Q. Reducing reaction of Fe 3 O 4 in
            nanoscopic reactors of a-CNTs. J. Phys. Chem. B 2007, 111,1724–1728.  42 Lee, J.; Kim, H.; Kahng, S. J.; Kim, G.; Son, Y. W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki,
                                                                  T.; Shinohara, H.; Kuk, Y. Bandgap modulation of carbon nanotubes by encapsulated
          28 Tr epanier, M.; Dalai, A. K.; Abatzoglou, N. Synthesis of CNT-supported cobalt
            nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on  metallofullerenes. Nature 2002, 415, 1005–1008.
            reducibility, activity and selectivity in FischerTropsch reactions. Appl. Catal. A: Gen.  43 Guan, J.; Pan, X.; Liu, X.; Bao, X. Syngas segregation induced by confinement in carbon
            2010, 374,79–86.                                      nanotubes: A combined first-principles and Monte Carlo study. J. Phys. Chem. C 2009,
                                                                  113, 21687–21692.
          29 Chen, W.; Fan, Z.; Gu,L.; Bao, X.; Wang, C. Enhanced capacitance of manganese oxide via
            confinement inside carbon nanotubes. Chem. Commun 2010, 46, 3905–3907.  44 Xu, S.; Zhang, W.; Li, X.; Han, X.; Liu, X.; Bao, X. To be submitted for publication.
          30 Raupp, G. B.; Delgass, W. N. M€ ossbauer investigation of supported Fe and FeNi catalysts:  45 Chen,H.; Sholl, D. S. Rapiddiffusion ofCH 4 /H 2 mixtures insingle-walled carbon nanotubes.
            II. Carbides formed FischerTropsch synthesis. J. Catal. 1979, 58, 348–360.  J. Am. Chem. Soc. 2004, 126, 7778–7779.
          31 Abbaslou, R. M. M.; Tavassoli, A.; Soltan, J.; Dalai, A. K. Iron catalysts supported on carbon  46 Blase,X.;Charlier,J.C.;DeVita,A.;Car,R.;Redlich,P.;Terrones, M.;Hsu,W.K.;Terrones,
            nanotubes for FischerTropsch synthesis: Effect of catalytic site position. Appl.Catal.A:  H.; Carroll, D. L.; Ajayan, P. M. Boron-mediated growth of long helicity-selected carbon
            Gen. 2009, 367,47–52.                                 nanotubes. Phys.Rev.Lett. 1999, 83, 5078–5081.
          32 Haddon, R. C. Chemistry of the fullerenes: The manifestation of strain in a class of  47 Czerw, R.; Terrones, M.; Charlier, J. C.; Blase, X.; Foley, B.; Kamalakaran, R.; Grobert, N.;
            continuous aromatic molecules. Science 1993, 261, 1545–1550.  Terrones, H.; Tekleab, D.; Ajayan, P. M.; Blau, W.; R€ uhle, M.; Carroll, D. L. Identification of
                                                                  electron donor states in N-doped carbon nanotubes. Nano Lett. 2001, 1, 457–460.
          33 Peralta-Inga, Z.; Lane, P.; Murray, J. S.; Boyd, S.; Grice, M. E.; O'Connor, C. J.; Politzer, P.
            Characterization of surface electrostatic potentials of some (5,5) and (n,1) carbon and  48 Garcia-Garcia, F. R.; Alvarez-Rodriguez, J.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A. The use
            boron/nitrogen model nanotubes. Nano Lett. 2003, 3,21–28.  of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in
                                                                  the ammonia decomposition reaction. Carbon 2010, 48, 267–276.
          34 Aika, K.; Ozaki, A.; Hori, H. Activation of nitrogen by alkali-metal promoted transition metal.
            J. Catal. 1972, 27,424–431.                        49 Hino, S. Electron interaction between encapsulated atoms and x-electrons in a fullerene
                                                                  Cage. J. Low Temp. Phys. 2006, 142, 127–132.
          35 Zhang, J.; Muller, J. O.; Zheng, W.; Wang, D.; Su, D. S.; Schlogl, R. Individual Fe-Co alloy
            nanoparticles on carbon nanotubes: Structural and catalytic properties. Nano Lett. 2008, 8,  50 Zhang, Q.; Huang, J.; Zhao, M.; Qian, W.; Wang, Y.; Wei, F. Radial growth of vertically
            2738–2743.                                            aligned carbon nanotube arrays from ethylene on ceramic spheres. Carbon 2008, 46,
          36 Zhang, Y.; Zhang, H.; Lin, G.; Chen, P.; Yuan, Y.; Tsai, K. R. Preparation, characterization  1152–1158.
            and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine  51 Philippe, R.; Caussat, B.; Falqui, A.; Kihn, Y.; Kalck, P.; Bord ere, S.; Plee, D.; Gaillard, P.;
            catalyst. Appl. Catal.A:Gen. 1999, 187, 213–224.      Bernard, D.; Serp, P. An original growth mode of MWCNTs on alumina supported iron
          37 Zhang, A. M.; Dong, J. L.; Xu, Q. H.; Rhee, H. K.; Li, X. L. Palladium cluster filled in inner of  catalysts. J. Catal. 2009, 263, 345–358.
            carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation.  52 Cambaz, Z. G.; Yushin, G.; Osswald, S.; Mochalin, V.; Gogotsi, Y. Noncatalytic synthesis of
            Catal. Today 2004, 935, 347–352.                     carbon nanotubes, graphene and graphite on SiC. Carbon 2008, 46, 841–849.





































          562 ’ ACCOUNTS OF CHEMICAL RESEARCH ’ 553–562 ’ 2011 ’ Vol. 44, No. 8
   5   6   7   8   9   10