Page 10 - The Effects of Confinement inside Carbon Nanotubes on Catalysis
P. 10
Effects of Confinement inside CNTs on Catalysis Pan and Bao
22 Chen, W.; Pan, X.; Bao, X. Tuning of redox properties of iron and iron oxides via 38 Tessonnier, J. P.; Pesant, L.; Ehret, G.; Ledoux, M. J.; Pham-Huu, C. Pd nanoparticles
encapsulation within carbon nanotubes. J. Am. Chem. Soc. 2007, 129, 7421–7426. introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinna-
23 Chen, W.; Fan, Z.; Pan, X.; Bao,X. Effect of confinementincarbon nanotubes on the activity maldehyde into hydrocinnamaldehyde. Appl.Catal.A: Gen. 2005, 288, 203–210.
of FischerTropsch iron catalyst. J. Am. Chem. Soc. 2008, 130,9414–9419. 39 Ma, H.;Wang, L.; Chen, L.; Dong, C.;Yu, W.; Huang, T.;Qian, Y.Pt nanoparticles deposited
24 Pan, X.; Fan, Z.; Chen, W.; Ding, Y.; Luo, H.; Bao, X. Enhanced ethanol production inside over carbon nanotubes for selective hydrogenation of cinnamaldehyde. Catal. Commun
carbon-nanotube reactors containing catalytic particles. Nat. Mater. 2007, 6, 507–511. 2007, 8,452–456.
25 Zhang, H.; Pan, X.; Liu, J.; Qian, W.; Wei, F.; Huang, Y.; Bao, X. Enhanced catalytic activity 40 Li, L. J.; Khlobystov, A. N.; Wiltshire, J. G.; Briggs, G. A. D.; Nicholas, R. J. Diameter-
of subnanometer titania clusters confined inside double-wall carbon nanotubes. Chem- selective encapsulation of metallocenes in single-walled carbon nanotubes. Nat. Mater.
SusChem 201110.1002/cssc.201000324. 2005, 4,481–485.
26 Chen, W.; Pan, X.; Willinger, M. G.; Su, D. S.; Bao, X. Facile autoreduction of iron oxide/ 41 Shiozawa, H.; Pichler, T.; Gr€ uneis, A.; Pfeiffer, R.; Kuzmany, H.; Liu, Z.; Suenaga, K.;
carbon nanotube encapsulates. J. Am. Chem. Soc. 2006, 128, 3136–3137. Kataura, H. A catalytic reaction inside a single-walled carbon nanotube. Adv. Mater. 2008,
20,1443–1449.
27 Cao, F.; Zhong, K.; Gao, A.; Chen, C.; Li, Q.; Chen, Q. Reducing reaction of Fe 3 O 4 in
nanoscopic reactors of a-CNTs. J. Phys. Chem. B 2007, 111,1724–1728. 42 Lee, J.; Kim, H.; Kahng, S. J.; Kim, G.; Son, Y. W.; Ihm, J.; Kato, H.; Wang, Z. W.; Okazaki,
T.; Shinohara, H.; Kuk, Y. Bandgap modulation of carbon nanotubes by encapsulated
28 Tr epanier, M.; Dalai, A. K.; Abatzoglou, N. Synthesis of CNT-supported cobalt
nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on metallofullerenes. Nature 2002, 415, 1005–1008.
reducibility, activity and selectivity in FischerTropsch reactions. Appl. Catal. A: Gen. 43 Guan, J.; Pan, X.; Liu, X.; Bao, X. Syngas segregation induced by confinement in carbon
2010, 374,79–86. nanotubes: A combined first-principles and Monte Carlo study. J. Phys. Chem. C 2009,
113, 21687–21692.
29 Chen, W.; Fan, Z.; Gu,L.; Bao, X.; Wang, C. Enhanced capacitance of manganese oxide via
confinement inside carbon nanotubes. Chem. Commun 2010, 46, 3905–3907. 44 Xu, S.; Zhang, W.; Li, X.; Han, X.; Liu, X.; Bao, X. To be submitted for publication.
30 Raupp, G. B.; Delgass, W. N. M€ ossbauer investigation of supported Fe and FeNi catalysts: 45 Chen,H.; Sholl, D. S. Rapiddiffusion ofCH 4 /H 2 mixtures insingle-walled carbon nanotubes.
II. Carbides formed FischerTropsch synthesis. J. Catal. 1979, 58, 348–360. J. Am. Chem. Soc. 2004, 126, 7778–7779.
31 Abbaslou, R. M. M.; Tavassoli, A.; Soltan, J.; Dalai, A. K. Iron catalysts supported on carbon 46 Blase,X.;Charlier,J.C.;DeVita,A.;Car,R.;Redlich,P.;Terrones, M.;Hsu,W.K.;Terrones,
nanotubes for FischerTropsch synthesis: Effect of catalytic site position. Appl.Catal.A: H.; Carroll, D. L.; Ajayan, P. M. Boron-mediated growth of long helicity-selected carbon
Gen. 2009, 367,47–52. nanotubes. Phys.Rev.Lett. 1999, 83, 5078–5081.
32 Haddon, R. C. Chemistry of the fullerenes: The manifestation of strain in a class of 47 Czerw, R.; Terrones, M.; Charlier, J. C.; Blase, X.; Foley, B.; Kamalakaran, R.; Grobert, N.;
continuous aromatic molecules. Science 1993, 261, 1545–1550. Terrones, H.; Tekleab, D.; Ajayan, P. M.; Blau, W.; R€ uhle, M.; Carroll, D. L. Identification of
electron donor states in N-doped carbon nanotubes. Nano Lett. 2001, 1, 457–460.
33 Peralta-Inga, Z.; Lane, P.; Murray, J. S.; Boyd, S.; Grice, M. E.; O'Connor, C. J.; Politzer, P.
Characterization of surface electrostatic potentials of some (5,5) and (n,1) carbon and 48 Garcia-Garcia, F. R.; Alvarez-Rodriguez, J.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A. The use
boron/nitrogen model nanotubes. Nano Lett. 2003, 3,21–28. of carbon nanotubes with and without nitrogen doping as support for ruthenium catalysts in
the ammonia decomposition reaction. Carbon 2010, 48, 267–276.
34 Aika, K.; Ozaki, A.; Hori, H. Activation of nitrogen by alkali-metal promoted transition metal.
J. Catal. 1972, 27,424–431. 49 Hino, S. Electron interaction between encapsulated atoms and x-electrons in a fullerene
Cage. J. Low Temp. Phys. 2006, 142, 127–132.
35 Zhang, J.; Muller, J. O.; Zheng, W.; Wang, D.; Su, D. S.; Schlogl, R. Individual Fe-Co alloy
nanoparticles on carbon nanotubes: Structural and catalytic properties. Nano Lett. 2008, 8, 50 Zhang, Q.; Huang, J.; Zhao, M.; Qian, W.; Wang, Y.; Wei, F. Radial growth of vertically
2738–2743. aligned carbon nanotube arrays from ethylene on ceramic spheres. Carbon 2008, 46,
36 Zhang, Y.; Zhang, H.; Lin, G.; Chen, P.; Yuan, Y.; Tsai, K. R. Preparation, characterization 1152–1158.
and catalytic hydroformylation properties of carbon nanotubes-supported Rh-phosphine 51 Philippe, R.; Caussat, B.; Falqui, A.; Kihn, Y.; Kalck, P.; Bord ere, S.; Plee, D.; Gaillard, P.;
catalyst. Appl. Catal.A:Gen. 1999, 187, 213–224. Bernard, D.; Serp, P. An original growth mode of MWCNTs on alumina supported iron
37 Zhang, A. M.; Dong, J. L.; Xu, Q. H.; Rhee, H. K.; Li, X. L. Palladium cluster filled in inner of catalysts. J. Catal. 2009, 263, 345–358.
carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation. 52 Cambaz, Z. G.; Yushin, G.; Osswald, S.; Mochalin, V.; Gogotsi, Y. Noncatalytic synthesis of
Catal. Today 2004, 935, 347–352. carbon nanotubes, graphene and graphite on SiC. Carbon 2008, 46, 841–849.
562 ’ ACCOUNTS OF CHEMICAL RESEARCH ’ 553–562 ’ 2011 ’ Vol. 44, No. 8