Page 13 - 49A Field Guide to Genetic Programming
P. 13

CONTENTS                                              CONTENTS


            8 Probabilistic Genetic Programming                            69
               8.1  Estimation of Distribution Algorithms . . . . . . . . . . . . .  69
               8.2  Pure EDA GP . . . . . . . . . . . . . . . . . . . . . . . . . .  71
               8.3  Mixing Grammars and Probabilities . . . . . . . . . . . . . .  74

            9 Multi-objective Genetic Programming                          75
               9.1  Combining Multiple Objectives into a Scalar Fitness Function 75
               9.2  Keeping the Objectives Separate . . . . . . . . . . . . . . . .  76
                   9.2.1  Multi-objective Bloat and Complexity Control . . . .  77
                   9.2.2  Other Objectives . . . . . . . . . . . . . . . . . . . . .  78
                   9.2.3  Non-Pareto Criteria . . . . . . . . . . . . . . . . . . .  80
               9.3  Multiple Objectives via Dynamic and Staged Fitness Functions 80
               9.4  Multi-objective Optimisation via Operator Bias . . . . . . . .  81
            10 Fast and Distributed Genetic Programming                    83
               10.1 Reducing Fitness Evaluations/Increasing their Effectiveness .  83
               10.2 Reducing Cost of Fitness with Caches . . . . . . . . . . . . .  86
               10.3 Parallel and Distributed GP are Not Equivalent . . . . . . . .  88
               10.4 Running GP on Parallel Hardware . . . . . . . . . . . . . . .  89
                   10.4.1 Master–slave GP . . . . . . . . . . . . . . . . . . . . .  89
                   10.4.2 GP Running on GPUs . . . . . . . . . . . . . . . . . .  90
                   10.4.3 GP on FPGAs . . . . . . . . . . . . . . . . . . . . . .  92
                   10.4.4 Sub-machine-code GP . . . . . . . . . . . . . . . . . .  93
               10.5 Geographically Distributed GP . . . . . . . . . . . . . . . . .  93

            11 GP Theory and its Applications                              97
               11.1 Mathematical Models . . . . . . . . . . . . . . . . . . . . . .  98
               11.2 Search Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
               11.3 Bloat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
                   11.3.1 Bloat in Theory  . . . . . . . . . . . . . . . . . . . . . 101
                   11.3.2 Bloat Control in Practice . . . . . . . . . . . . . . . . 104



            III   Practical Genetic Programming                          109

            12 Applications                                               111
               12.1 Where GP has Done Well . . . . . . . . . . . . . . . . . . . . 111
               12.2 Curve Fitting, Data Modelling and Symbolic Regression . . . 113
               12.3 Human Competitive Results – the Humies . . . . . . . . . . . 117
               12.4 Image and Signal Processing . . . . . . . . . . . . . . . . . . . 121
               12.5 Financial Trading, Time Series, and Economic Modelling  . . 123
               12.6 Industrial Process Control . . . . . . . . . . . . . . . . . . . . 124
               12.7 Medicine, Biology and Bioinformatics . . . . . . . . . . . . . 125
               12.8 GP to Create Searchers and Solvers – Hyper-heuristics . . . . 126

                                           xiii
   8   9   10   11   12   13   14   15   16   17   18