Page 89 - 35Linear Algebra
P. 89

4.3 Directions and Magnitudes                                                                   89






















                   Then the Law of Cosines states that:


                                                            2
                                                     2
                                             2
                                     kv − uk = kuk + kvk − 2kuk kvk cos θ
                   Then isolate cos θ:



                                    2
                                            2
                                                            1
                                                                 1 2
                                                                                    n 2
                                                                               n
                            kv − uk − kuk − kvk    2  = (v − u ) + · · · + (v − u )
                                                                 1 2
                                                                               n 2
                                                            − (u ) + · · · + (u )
                                                                               n 2
                                                                 1 2
                                                            − (v ) + · · · + (v )
                                                              1 1
                                                                             n n
                                                      = −2u v − · · · − 2u v
                   Thus,
                                                          1 1
                                                                       n n
                                        kuk kvk cos θ = u v + · · · + u v .
                   Note that in the above discussion, we have assumed (correctly) that Eu-
                                       n
                   clidean lengths in R give the usual notion of lengths of vectors for any plane
                       n
                   in R . This now motivates the definition of the dot product.
                                                                               
                                                             u 1               v 1
                                                                               .
                                                              .
                   Definition The dot product of u =  .  and v =  .  is
                                                           . 
                                                                             . 
                                                             u n               v n
                                                                   n n
                                                      1 1
                                            u v := u v + · · · + u v .
                                                                   89
   84   85   86   87   88   89   90   91   92   93   94