Page 88 - 35Linear Algebra
P. 88

88                                                                  Vectors in Space, n-Vectors


                               You might sometimes encounter the word “hyperplane” without the qual-
                            ifier “k-dimensional. When the dimension k is not specified, one usually as-
                                                                             n
                            sumes that k = n − 1 for a hyperplane inside R . This is the kind of object
                            that is specified by one algebraic equation in n variables.



                            Example 48 (Specifying a plane with one linear algebraic equation.)
                            The solution set to

                                                                                             
                                                                  x 1      1 − x 2 − x 3 − x 4 − x 5
                                                                  x 2          x 2
                                                                                             
                                                                                             
                                   x 1 + x 2 + x 3 + x 4 + x 5 = 1 ⇔   x 3    =    x 3       
                                                                                             
                                                                  x 4                    x 4
                                                                                             
                                                                  x 5                        x 5
                            is

                                                                                                  
                                               
                                                                      
                                          
                                                                             
                                                                 
                                                      
                                                          
                               
                               1           −1          −1         −1          −1 
                                                                                                  
                                                                                                    
                               0            1        0         0         1                
                              
                                                                                                    
                               
                                                                                         
                                  0           0          1           0           0                    ,
                                    + s 2      + s 3      + s 4      + s 5     s 2 , s 3 , s 4 , s 5 ∈ R
                                                                         
                               0            0        0         1         0                
                              
                               
                                                                                                    
                                                                                                    
                                                                                                  
                                  0           0          0           0           1  
                                                                                                   
                                                         5
                            a 4-dimensional hyperplane in R .
                            4.3     Directions and Magnitudes
                            Consider the Euclidean length of an n-vector:
                                                                                 v
                                                                                     n
                                                                                 u
                                                p                                uX
                                                                         n 2
                                                                                         i 2
                                                    1 2
                                        kvk :=    (v ) + (v ) + · · · + (v ) =   t     (v ) .
                                                            2 2
                                                                                    i=1
                            Using the Law of Cosines, we can then figure out the angle between two
                                                                                          n
                            vectors. Given two vectors v and u that span a plane in R , we can then
                            connect the ends of v and u with the vector v − u.
                                                       88
   83   84   85   86   87   88   89   90   91   92   93