Page 59 - 35Linear Algebra
P. 59

2.3 Elementary Row Operations                                                                   59


                   where the EROs and their inverses are

                                                                                    
                              1 0 0 0                 1 0 0 0                1 0     0 0
                             0 1 0 0               0 1 0 0              0 1     0 0 
                      E 1 =              ,  E 2 =              , E 3 =              
                              2 0 1 0                 0 0 1 0                0 0     1 0
                                                                                    
                              0 0 0 1                 0 1 0 1                0 0 −1 1
                                                                                   
                               1 0 0 0               1    0 0 0               1 0 0 0
                               0 1 0 0       −1    0    1 0 0       −1    0 1 0 0   
                           
                      −1
                    E 1  =                , E 2  =              , E 3  =             .
                            −2 0 1 0              0    0 1 0             0 0 1 0   
                               0 0 0 1               0 −1 0 1                 0 0 1 1
                   Applying inverse elementary matrices to both sides of the equality U = E 3 E 2 E 1 M
                   gives M = E −1 E −1 E −1 U or
                               1   2   3
                                                                                      
                      2    0 −3    1      1 0 0 0       1   0 0 0     1 0 0 0      2 0 −3     1
                     0    1   2   2    0 1 0 0     0   1 0 0   0 1 0 0    0 1    2   2 
                                      =
                                                                                      
                    −4     0   9   2     −2 0 1 0       0   0 1 0     0 0 1 0      0 0    3   4
                                                                                      
                      0 −1     1 −1       0 0 0 1       0 −1 0 1      0 0 1 1      0 0    0 −3
                                                                                  
                                           1 0 0 0        1   0 0 0      2 0 −3       1
                                          0 1 0 0      0   1 0 0    0 1     2    2 
                                      =                                           
                                          −2 0 1 0        0   0 1 0      0 0     3    4
                                                                                  
                                           0 0 0 1        0 −1 1 1       0 0     0 −3
                                                                    
                                           1   0 0 0       2 0 −3     1
                                           0   1 0 0       0 1    2   2
                                                                    
                                      =                               .
                                          −2   0 1 0       0 0    3   4
                                                                    
                                           0 −1 1 1        0 0    0 −3
                   This is a lower triangular matrix times an upper triangular matrix.





















                                                                   59
   54   55   56   57   58   59   60   61   62   63   64