Page 356 - 35Linear Algebra
P. 356

356                                                                          Sample Final Exam


                                       eject the last two vectors and obtain as our basis

                                                                 
                                                           1       4     1
                                                                               0 
                                                                                   
                                                              2     3     0     1
                                                                                  
                                                                   
                                                                 ,
                                                                             ,
                                                                       ,
                                                                              .
                                                           3       2     0     0 
                                                                   
                                                                                  
                                                              4     1     0     0
                                                                                  
                                       Of course, this answer is far from unique!
                                   (c) The method is the same as above. Add the standard basis to {u, v}
                                       to obtain the linearly dependent set {u, v, e 1 , . . . , e n }. Then put these
                                       vectors as the columns of a matrix and row reduce. The standard
                                       basis vectors in columns corresponding to the non-pivot variables can
                                       be removed.
                               9.  (a)
                                                    1     
                                              λ    −     −1
                                                     2

                                                                     1      1   1    λ   1       1
                                       det   − 1  λ −  1  −  1   = λ (λ−  λ− )+    −   −    − − +λ
                                             2      2    2           2      4   2    2   2       4
                                            −1     − 1    λ
                                                     2
                                                              1     3                  3
                                                                2
                                                          3
                                                      = λ − λ − λ = λ(λ + 1)(λ − ) .
                                                              2     2                  2
                                                                      3
                                       Hence the eigenvalues are 0, −1, .
                                                                      2
                                   (b) When λ = 0 we must solve the homogenous system
                                                1                 1                          
                                              0     1   0         1     0  0         1 0 −1 0
                                                 2                   2
                                            1   1   1  0  ∼  0    1  1  0  ∼  0 1      2   0  .
                                                                             
                                                          
                                                                                  
                                                               
                                                                                                  
                                             2  2   2               4  2
                                              1  1  0   0         0  1  1  0         0 0    0   0
                                                 2                   2
                                                                     
                                                                     s
                                       So we find the eigenvector   −2s   where s 6= 0 is arbitrary.
                                                                     s
                                       For λ = −1
                                                           1                         
                                                        1      1  0         1 0 1 0
                                                            2
                                                      1    3  1                      
                                                        2  2  2  0  ∼  0 1 0 0  .
                                                        1   1  1  0         0 0 0 0
                                                            2
                                                                    
                                                                  −s
                                       So we find the eigenvector    0   where s 6= 0 is arbitrary.
                                                                    s
                                                      356
   351   352   353   354   355   356   357   358   359   360   361