Page 219 - 35Linear Algebra
P. 219

11.2 Matrix of a Linear Transformation (Redux)                                                219


                                  i
                   The number m is the ith component of L(e j ) in the basis F, while the f i
                                  j
                   are vectors (note that if α is a scalar, and v a vector, αv = vα, we have
                   used the latter—rather uncommon—notation in the above formula). The
                              i
                   numbers m naturally form a matrix whose jth column is the column vector
                              j
                   displayed above. Indeed, if
                                                                   n
                                                      1
                                              v = e 1 v + · · · + e n v ,

                   Then


                                                             n
                                                 2
                                         1
                           L(v) = L(v e 1 + v e 2 + · · · + v e n )
                                                                              m
                                                                             X
                                                 2
                                       1
                                                                  n
                                  = v L(e 1 ) + v L(e 2 ) + · · · + v L(e n ) =  L(e j )v j
                                                                             j=1
                                                                           "          #
                                       m                               n      m
                                      X                              X       X
                                              1
                                                             m
                                                                                   i j
                                                                j
                                  =      (f 1 m + · · · + f m m )v =     f i     M v
                                              j              j                     j
                                      j=1                             i=1    j=1
                                                            1    1         1    
                                                                                    1
                                                           m 1  m 2  · · · m n     v
                                                                                   v
                                                          m 2  m 2             2
                                                            1    2
                                  =    f 1 f 2 · · · f m  .          .         
                                                        
                                                                                     .
                                                         . .         . .   . .   .
                                                                            .   .
                                                           m m       · · · m m     v n
                                                             1              n
                   In the column vector-basis notation this equality looks familiar:
                                                                     
                                      v 1            m 1  . . . m 1     v 1
                                                       1         n
                                                 .
                                                                         .
                                       .
                                    .                         .   . 
                                 L  .  =  .       .         . .   .  .
                                      v n           m  m  . . . m m     v n
                                           E           1         n             F
                                                   i
                   The array of numbers M = (m ) is called the matrix of L in the input and
                                                   j
                   output bases E and F for V and W, respectively. This matrix will change
                   if we change either of the bases. Also observe that the columns of M are
                   computed by examining L acting on each basis vector in V expanded in the
                   basis vectors of W.
                   Example 123 Let L: P 1 (t) 7→ P 1 (t), such that L(a + bt) = (a + b)t. Since V =
                                                                  219
   214   215   216   217   218   219   220   221   222   223   224