Page 181 - 35Linear Algebra
P. 181

8.2 Elementary Matrices and Determinants                                                      181












                            Figure 8.5: Determinants measure if a matrix is invertible.


                                                                    i
                                                                           i
                                                                 i
                   Corollary 8.2.3. Any elementary matrix E , R (λ), S (µ) is invertible, ex-
                                                                           j
                                                                 j
                             i
                   cept for R (0). In fact, the inverse of an elementary matrix is another ele-
                   mentary matrix.
                      To obtain one last important result, suppose that M and N are square
                   n × n matrices, with reduced row echelon forms such that, for elementary
                   matrices E i and F i ,

                                           M = E 1 E 2 · · · E k RREF(M) ,


                   and
                                            N = F 1 F 2 · · · F l RREF(N) .

                   If RREF(M) is the identity matrix (i.e., M is invertible), then:



                    det(MN) = det(E 1 E 2 · · · E k RREF(M)F 1 F 2 · · · F l RREF(N))

                                = det(E 1 E 2 · · · E k IF 1 F 2 · · · F l RREF(N))
                                = det(E 1 ) · · · det(E k ) det(I) det(F 1 ) · · · det(F l ) det RREF(N)
                                = det(M) det(N)

                   Otherwise, M is not invertible, and det M = 0 = det RREF(M). Then there
                                                              n
                   exists a row of zeros in RREF(M), so R (λ) RREF(M) = RREF(M) for
                   any λ. Then:

                            det(MN) = det(E 1 E 2 · · · E k RREF(M)N)
                                       = det(E 1 ) · · · det(E k ) det(RREF(M)N)
                                                                     n
                                       = det(E 1 ) · · · det(E k ) det(R (λ) RREF(M)N)
                                       = det(E 1 ) · · · det(E k )λ det(RREF(M)N)
                                       = λ det(MN)


                                                                  181
   176   177   178   179   180   181   182   183   184   185   186