Page 256 - 35Linear Algebra
P. 256

256                                                      Orthonormal Bases and Complements


                            in T, we get

                                                     1               i               n
                                         v u i = c u 1 u i + · · · + c u i u i + · · · + c u n u i
                                                                  i
                                                     1
                                                                               n
                                                = c · 0 + · · · + c · 1 + · · · + c · 0
                                                     i
                                                = c ,
                                         ⇒ c i  = v u i
                                         ⇒ v = (v u 1 )u 1 + · · · + (v u n )u n
                                                    X
                                                =      (v u i )u i .
                                                     i

                               This proves the following theorem.

                            Theorem 14.2.1. For an orthonormal basis {u 1 , . . . , u n }, any vector v can
                            be expressed as
                                                              X
                                                          v =     (v u i )u i .
                                                                i

                                                        Reading homework: problem 1




                                                                                       2
                                               All orthonormal bases for R


                            14.2.1     Orthonormal Bases and Dot Products
                                                                                    n
                            To calculate lengths of, and angles between vectors in R we most commonly
                            use the dot product:

                                                        1 
                                                   1
                                                 v        w
                                                                                 n
                                                                                    n
                                                                    1
                                                                      1
                                                           .
                                                  .
                                                .  ·  .  := v w + · · · + v w .
                                                .   . 
                                                 v n      w n
                            When dealing with more general vector spaces the dot product makes no
                            sense, and one must instead choose an appropriate inner product. By “ap-
                            propriate”, we mean an inner product well-suited to the problem one is try-
                            ing to solve. If the vector space V under study has an orthonormal basis
                            O = (u 1 , . . . , u n ) meaning
                                                            hu i , u j i = δ ij ,


                                                      256
   251   252   253   254   255   256   257   258   259   260   261