Page 15 - MetalLigand Cooperation by AromatizationDearomatization: A New Paradigm in Bond Activation and Green Catalysis
P. 15
MetalLigand Cooperation Gunanathan and Milstein
Experimental and computational study of metal-ligand cooperation in H-H and C-H J. Org. Chem. 1984, 49,3359–3363. (c) Watson, A. J. A.; Williams, J. M. J. The give and
bond activation via reversible ligand dearomatization. Organometallics 2010, 29, take of alcohol activation. Science 2010, 329,635–636 and references cited therein.
3817–3827. 31 Gunanathan, C.; Ben-David, Y.; Milstein, D. Direct synthesis of amides from alcohols and
14 Iron,M.A.;Ben-Ari,E.;Cohen,R.;Milstein,D.Metalligandcooperationinthetransaddition amines with liberation of H 2 . Science 2007, 317, 790–792.
of dihydrogen to a pincer Ir(I) complex: a DFT study. Dalton Trans. 2009, 9433–9439. 32 Milstein, D.; Gunanathan, C.; Gnanprakasam, B.; Balaraman, E.; Zhang, J. U.S. Patent
15 Zeng, G.; Guo, Y.; Li, S. H 2 Activation by a (PNP)Ir(C 6 H 5 ) Complex via the dearomatization/ application pending.
aromatization process of the PNP ligand: a computational study. Inorg. Chem. 2009, 48, 33 Zeng, H.; Guan, Z. Direct synthesis of polyamides via catalytic dehydrogenation of diols and
10257–10263.
diamines. J. Am. Chem. Soc. 2011, 133, 1159–1161.
16 (a) K€ ass, M.; Friedrich, A.; Drees, M.; Schneider, S. Ruthenium complexes with cooperative 34 Gnanaprakasam, B.; Milstein,D.Synthesisof amidesfromestersandamineswithliberation
PNP ligands: bifunctional catalysts for the dehydrogenation of ammoniaborane. Angew. of H 2 under neutral conditions. J. Am. Chem. Soc. 2011, 133,1682–1685.
Chem., Int. Ed. 2009, 48, 905–907. (b) Friedrich, A.; Drees, M.; Kass, M.; Herdtweck, E.;
Schneider, S. Ruthenium complexeswith cooperative PNP-pinceramine, amido, imine, and 35 Gnanaprakasam, B.; Zhang, J.; Milstein, D. Direct synthesis of imines from alcohols and
enamido ligands: facile ligand backbone functionalization processes. Inorg. Chem. 2010, amines with liberation of H 2 . Angew. Chem., Int. Ed. 2010, 48,1468–1471.
49, 5482–5494. 36 (a) Blum,O.;Milstein,D.Hydrideeliminationfromaniridium(III) alkoxidecomplex.Acaseinwhich
17 Kohl,S. W.;Weiner, L.;Schwartsburd, L.;Konstantinovski, L.;Shimon, L. J. W.; Ben-David, a vacant cis coordination site is not required. J. Organomet. Chem. 2000, 593/4, 479–484.
Y.; Iron, M. A.; Milstein, D. Consecutive thermal H 2 and light-induced O 2 evolution from 37 (a) Shimizu, K.; Ohshima, K.; Satsuma, A. Direct dehydrogenative amide synthesis from
water promoted by a metal complex. Science 2009, 324,74–77. alcohols and amines catalyzed by γ-alumina supported silver cluster. Chem.;Eur. J.
18 (a) Li, J.; Shiota, Y.; Yoshizawa, K. Metal-ligand cooperation in H 2 production and H 2 O 2009, 15, 9977–9980. (b) Dam, J. H.; Osztrovszky, G.; Nordstrøm, L. U.; Madsen, R.
decomposition on a Ru(II) PNN complex: the roleofligand dearomatization-aromatization. J. Amide synthesis from alcohols and amines catalyzed by ruthenium N-heterocyclic carbene
Am. Chem. Soc. 2009, 131, 13584–13585. (b) Yang, X.; Hall, M. B. Mechanism of water complexes. Chem.;Eur. J. 2010, 16,6280–6287. (c) Zhang, Y.; Chen, C.; Ghosh, S. C.;
splitting and oxygen-oxygen bond formation by a mononuclear ruthenium complex. J. Am. Li, Y.; Hong, S. H. Well-defined N-heterocyclic carbene based ruthenium catalysts for direct
Chem. Soc. 2010, 132, 120–130. (c) Chen, Y.; Fang, W.-H. Mechanism for the light- amide synthesis from alcohols and amines. Organometallics 2010, 29, 1374–1378. (d)
induced O 2 evolution from H 2 O promoted by Ru(II) PNN complex: A DFT study. J. Phys. Nova, A.; Balcells, D.; Scheley, N. D.; Dobereiner, G. E.; Crabtree, R. H.; Eisenstein, O. An
Chem. A 2010, 114, 10334–10338. experimental theoretical study of the factors that affect the switch between ruthenium-
catalyzed dehydrogenative amide formation versus amine alkylation. Organometallics
19 Khaskin,E.;Iron,M.A.;Shimon,L.J.W.;Zhang,J.;Milstein,D.N-HActivationofaminesand
ammonia by Ru via metal-ligand cooperation. J. Am. Chem. Soc. 2010, 132, 8542–8543. 2010, 29, 6548–6558.
38 (a) Zweifel, T.; Naubron, J.-V.; Gr€ utzmacher, H. Catalyzed dehydrogenative coupling of
20 Gunanathan, C.; Gnanaprakasam, B.; Iron, M. A.; Shimon, L. J. W.; Milstein, D. Long-
range” metal-ligand cooperation in H 2 activation and ammonia-promoted hydride transfer primary alcohols with water, methanol, or amines. Angew. Chem., Int. Ed. 2009, 48, 559–
with a ruthenium-acridine pincer complex. J. Am. Chem. Soc. 2010, 132, 14763–14765. 563. (b) Watson, A. J. A.; Maxwell, A. C.; Williams, J. M. J. Ruthenium-catalyzed oxidation
21 Gunanathan, C.; Shimon, L. J. W.; Milstein, D. Direct conversion of alcohols to acetals and of alcohols into amides. Org. Lett. 2009, 11, 2667–2670.
H 2 catalyzed by an acridine-based ruthenium pincer complex. J. Am. Chem. Soc. 2009, 39 (a) Teunissen, H. T.; Elsevier, C. J. Homogeneous ruthenium catalyzed hydrogenation of esters
131, 3146–3147. to alcohols. Chem.Commun. 1998, 1367–1368. (b) Saudan, L. A.; Saudan, C. M.; Debieux,
C.; Wyss, P. Dihydrogen reduction of carboxylic esters to alcohols under the catalysis of
22 For another example of remote H 2 splitting: Stepowska, E.; Jiang, H.; Song, D. Reversible homogeneous ruthenium complexes: high efficiency and unprecedented chemoselectivity.
H 2 splitting between Ru(II) and a remote carbanion in a zwitterionic compound. Chem. Angew. Chem., Int. Ed. 2007, 46, 7473–7476. (c) Kuriyama, W.; Ino, Y.; Ogata, O.; Sayo, N.;
Commun. 2010, 46, 556–558.
Saito, T. A Homogeneous catalyst for reduction of optically active esters to the corresponding
23 Hudlicky, M. Oxidations in Organic Chemistry; American Chemical Society: Washington, chiral alcohols without loss of optical purities. Adv. Synth. Catal. 2010, 352,92–96.
DC, 1990.
40 Balaraman, E.; Gnanaprakasam, B.; Shimon, L. J. W.; Milstein, D. Direct hydrogenation of
24 Ley, S. V.; Madin, A. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Ley, amides to alcohols and amines under mild conditions. J. Am. Chem. Soc. 2010, 132,
S. V., Eds.; Pergamon: Oxford, 1991; Vol. 7, pp 251289. 16756–16758.
25 (a)Ito,T.; Horino,H.; Koshiro, Y.; Yamamoto,A. Selective dimerization of aldehydesto esters 41 Tanaka, R.; Yamashita, M.; Nozaki, K. Catalytic hydrogenation of carbon dioxide using
catalyzed by hydridoruthenium complexes. Bull. Chem. Soc. Jpn. 1982, 55, 504–512. (b) Ir(III)-pincer complexes. J. Am. Chem. Soc. 2009, 131, 14168–14169.
Menashe, N.; Shvo, Y. Catalytic disproportionation of aldehydes with ruthenium complexes. 42 (a) Langer, R.; Leitus, G.; Ben-David, Y.; Milstein, D. Efficient hydrogenation of ketones
Organometallics 1991, 10, 3885–3891.
catalyzed by an iron pincer complex. Angew. Chem., Int. Ed. 2011, 50, 2120–2124. (b)
26 Murahashi, S.-I.; Naota, T.; Ito, K.; Maeda, Y.; Taki, H. Ruthenium-catalyzed oxidative Casey, C.P.;Guan, H. An efficientand chemoselective iron catalyst for the hydrogenation of
transformation of alcohols and aldehydes to esters and lactones. J. Org. Chem. 1987, 52, ketones. J. Am. Chem. Soc. 2007, 129, 5816–5817. (c) Sui-Seng, C.; Freutel, F.; Lough,
4319–4327. A. J.; Morris, R. H. Highlyefficient catalyst systems usingironcomplexes with a tetradentate
27 Zhang, J.; Gandelman, M.; Shimon, L. J. W.; Milstein, D. Electron-rich, bulky PNN-type PNNP ligand for the asymmetric hydrogenation of polar bonds. Angew. Chem., Int. Ed.
ruthenium complexes: synthesis, characterization and catalysisof alcohol dehydrogenation. 2008, 47,940–943. (d) Highlight: Bauer G.; Kirchner, K. A. Well defined bifunctional iron
Dalton Trans. 2007, 107–113. catalysts for the hydrogenation of ketones: iron,the new ruthenium. Angew.Chem.,Int.Ed.
28 Zhang, J.; Gandelman, M.; Shimon, L. J. W.; Rozenberg, H.; Milstein, D. Electron-rich, 2011, 50, 57985800.
bulky ruthenium PNP-type complexes. Acceptorless catalytic alcohol dehydrogenation. 43 Gunanathan, C.; Milstein, D. Selective synthesis of primary amines directly from alcohols
Organometallics 2004, 23, 4026–4033. and ammonia. Angew. Chem., Int. Ed. 2008, 47,8661–8664.
29 Gnanaprakasam, B.; Ben-David, Y.; Milstein., D. Ruthenium pincer-catalyzed acylation of 44 (a) Hayes, K. S. Industrial processes for manufacturing amines. Appl. Catal., A 2001, 221,
alcoholsusing esters withliberation of hydrogenunder neutral conditions. Adv.Synth.Catal. 187–195. (b) Lawrence, S. A. Amines: synthesis, properties and applications;Cambridge
2010, 352, 3169–3173. University Press: Cambridge, 2005.
30 (a) Hamid, M. H. S. A.; Williams, J. M. J. Ruthenium catalysed N-alkylation of amines with 45 (a) Narayan,S.; Muldoon, J.; Finn, M. G.;Fokin, V. V.;Kolb, H. C.; Sharpless, K. B. On water:
alcohols. Chem. Commun. 2007, 725–727. (b) Watanabe, Y.; Tsuji, Y.; Ige, H.; Ohsugi, Y.; unique reactivity of organic compounds in aqueous suspension. Angew. Chem., Int. Ed.
Ohta, T. Ruthenium-catalyzedN-alkylationand N-benzylation of aminoarenes with alcohols. 2005, 44, 3275–3279.
602 ’ ACCOUNTS OF CHEMICAL RESEARCH ’ 588–602 ’ 2011 ’ Vol. 44, No. 8