Page 66 - 35Linear Algebra
P. 66

66                                                                 Systems of Linear Equations


                            Example 32 (Non-pivot variables determine the gemometry of the solution set)

                                                       
                                                    x 1          
                                    1 0    1 −1               1       1x 1 + 0x 2 + 1x 3 − 1x 4 = 1
                                                      x 2
                                                       
                                    0 1 −1      1       =  1   ⇔     0x 1 + 1x 2 − 1x 3 + 1x 4 = 1
                                                             
                                                     x 3  
                                    0 0    0    0             0        0x 1 + 0x 2 + 0x 3 + 0x 4 = 0
                                                      x 4
                            Following the standard approach, express the pivot variables in terms of the non-pivot
                            variables and add “empty equations”. Here x 3 and x 4 are non-pivot variables.
                                                                                       
                                                             x 1      1         −1           1
                                  x 1 = 1 − x 3 + x 4 
                                                      
                                                                      1
                                                      
                                  x 2 = 1 + x 3 − x 4       x 2              1       −1 
                                                        ⇔       =     + x 3      + x 4    
                                                                      0
                                  x 3 =       x 3           x 3              1        0 
                                                      
                                                      
                                                      
                                  x 4 =           x 4        x 4      0           0          1
                            The preferred way to write a solution set S is with set notation;
                                                                                    
                                           x 1        1         −1           1              
                                                                                            
                                                       1
                                                                                            
                                             x 2             1        −1 
                                     S =         =     + µ 1      + µ 2      : µ 1 , µ 2 ∈ R  .
                                                       0
                                           x 3               1         0             
                                            
                                                                                            
                                                                                            
                                              x 4      0          0           1
                            Notice that the first two components of the second two terms come from the non-pivot
                            columns. Another way to write the solution set is
                                                      P      H       H
                                                S = x + µ 1 x + µ 2 x   : µ 1 , µ 2 ∈ R ,
                                                              1       2
                            where
                                                                                 
                                                    1             −1                1
                                                    1
                                              P
                                            x =       ,  x H  =    1   ,  x H  =   −1   .
                                                                                 
                                                                                      
                                                            1
                                                                 
                                                                     
                                                   
                                                                            2
                                                    0
                                                                 1             0 
                                                    0               0               1
                                  P
                            Here x is a particular solution while x H  and x H  are called homogeneous solutions.
                                                                1       2
                            The solution set forms a plane.
                            2.5.3    Solutions and Linearity
                            Motivated by example 32, we say that the matrix equation Mx = v has
                                           P
                                                  H
                                                          H
                            solution set {x + µ 1 x + µ 2 x | µ 1 , µ 2 ∈ R}. Recall that matrices are linear
                                                  1       2
                            operators. Thus
                                                                    P
                                                          H
                                                  H
                                                                                         H
                                                                              H
                                          P
                                     M(x + µ 1 x + µ 2 x ) = Mx + µ 1 Mx + µ 2 Mx = v ,
                                                  1
                                                                                         2
                                                                              1
                                                          2
                                                       66
   61   62   63   64   65   66   67   68   69   70   71