Page 339 - 35Linear Algebra
P. 339

339


                     10. (i) We say that the vectors {v 1 , v 2 , . . . v n } are linearly independent if there
                                                                                           2
                                                     n
                                            1
                                               2
                                                                                     1
                         exist no constants c , c , . . . c (not all vanishing) such that c v 1 + c v 2 +
                               n
                         · · · + c v n = 0. Alternatively, we can require that there is no non-trivial
                                                                                      2
                                                                               1
                                             1
                                                       n
                                                2
                         solution for scalars c , c , . . . , c to the linear system c v 1 + c v 2 + · · · +
                          n
                         c v n = 0. (ii) We say that these vectors span a vector space V if the set
                                                                  n
                                                      2
                                                                          2
                                                                        1
                                               1
                                                                                n
                         span{v 1 , v 2 , . . . v n } = {c v 1 + c v 2 + · · · + c v n : c , c , . . . c ∈ R} = V . (iii)
                         We call {v 1 , v 2 , . . . v n } a basis for V if {v 1 , v 2 , . . . v n } are linearly independent
                         and span{v 1 , v 2 , . . . v n } = V .
                                                     3
                         For u, v, w to be a basis for R , we firstly need (the spanning requirement)
                                         
                                          x
                         that any vector     can be written as a linear combination of u, v and w
                                          y
                                          z
                                                                      
                                            −1         4           10        x
                                                                             y
                                                       5
                                        c 1   −4   + c 2     + c 3    7    =     .
                                              3        0         h + 3       z
                         The linear independence requirement implies that when x = y = z = 0, the
                                                                      3
                                                                 2
                                                            1
                         only solution to the above system is c = c = c = 0. But the above system
                         in matrix language reads
                                                                1
                                                                   
                                              −1 4      10     c        x
                                              −4 5      7      c    =   y   .
                                                            2      
                                                3 0 h + 3      c 3      z
                         Both requirements mean that the matrix on the left hand side must be
                         invertible, so we examine its determinant
                                          
                              −1 4     10
                         det   −4 5    7    = −4 · (−4 · (h + 3) − 7 · 3) + 5 · (−1 · (h + 3) − 10 · 3)
                                3 0 h + 3
                                                      = 11(h − 3) ·
                         Hence we obtain a basis whenever h 6= 3.










                                                                  339
   334   335   336   337   338   339   340   341   342   343   344