Page 235 - 35Linear Algebra
P. 235

12.2 The Eigenvalue–Eigenvector Equation                                                      235


                                                                     3
                                                                           3
                   Example 128 Let L be the linear transformation L: R → R given by
                                                                 
                                               x         2x + y − z
                                                y
                                            L     =    x + 2y − z    .
                                                z       −x − y + 2z

                   In the standard basis the matrix M representing L has columns Le i for each i, so:


                                                                 
                                           x           2    1 −1      x
                                                L
                                           y   7−→     1    2 −1      y  .
                                                                 
                                            z        −1 −1      2     z
                   Then the characteristic polynomial of L is 2

                                                             
                                           λ − 2   −1      1
                          P M (λ) = det    −1    λ − 2    1  
                                             1      1    λ − 2

                                                    2
                                  = (λ − 2)[(λ − 2) − 1] + [−(λ − 2) − 1] + [−(λ − 2) − 1]
                                             2
                                  = (λ − 1) (λ − 4) .

                   So L has eigenvalues λ 1 = 1 (with multiplicity 2), and λ 2 = 4 (with multiplicity 1).
                      To find the eigenvectors associated to each eigenvalue, we solve the homogeneous
                   system (M − λ i I)X = 0 for each i.


                  λ = 4: We set up the augmented matrix for the linear system:

                                                                             
                                         −2    1 −1 0             1 −2 −1 0
                                           1 −2 −1 0        ∼     0 −3 −3 0
                                                                             
                                         −1 −1 −2 0               0 −3 −3 0
                                                                           
                                                                  1 0 1 0
                                                            ∼    0 1 1 0     .
                                                                  0 0 0 0


                                                  
                                                −1
                         Any vector of the form t   −1   is then an eigenvector with eigenvalue 4; thus L
                                                  1
                         leaves a line through the origin invariant.

                     2
                      It is often easier (and equivalent) to solve det(M − λI) = 0.

                                                                  235
   230   231   232   233   234   235   236   237   238   239   240